회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어떡해야하지.. 시간은 더 늘리기 힘들거같고 이제 효율이랑 전략만 남았는데 화작...
-
대학라인?? 0
국수영사문지구 국어 1컷 수학 96이상(원점슈) 영어1 사문 50 지구 1컷...
-
작년엔 1월 말이었는데
-
안사기 태극기 진짜 어쩌냐
-
고딩때 마지막으로 재서 기억이 가물가물하네
-
인터넷신문은 먼가 안보게되는느낌 신문을 돈내고봐야 아까워서라도 보게됭까…
-
미국이나 유럽은 0
아시아에비해서 학벌주의가 덜함뇨?
-
조발을 하렴
-
1. 지균이라 밀려서 cc받을까 불안 2. 올해 기준 빡세질까봐 불안
-
내 악력 0
뻥안치고 ㄹㅇ ㄱㅊ 걸고 58
-
옷으로 숨겨지지 않는 무언가가 있으면 주변에서 조물딱조물딱거림
-
당장 내 레어를 7
사가거라
-
진짜뭐함 0
그 대학
-
기타 연습곡 1
추천 받습니다. 어쿠스틱 기타예요..
-
가격 왤케 쌈 0
사재기 굿ㅋ
-
진짜 존나 빡치네
-
내 악력 0
32
-
고대는 진짜 안하나보네
-
동성이 가슴 한 번만 만져봐도 돼? 이거 들으면 찐이다
-
여러분 점심 뭐 드셨나요? 전 백소정에서 돈까스 먹었어요 ㅎㅎ
-
포켓몬 에디션 0
이게 박사지
-
지금 인문계열 입학예정이고 복전이 필수인데 상경계열을 하는게 좋을까요 공대를 하는게...
-
덕코 기부해주면 올해 일 잘 풀림
-
걔네를 저격해서 뭘 한다 하든 이미 쓴 원서는 불합이고 대학 붙지도 못하는 거면...
-
아노.. 10
아나타가 이치방 스키데스 다카라.. 오레토 겟콘시테 구다사이
-
그냥 자신한테 잘맞는 시험지가 나오길 기도하는게 맞는듯 압도적 고정 1등급이 아닌...
-
음흣흣 2
.
-
우리나라가 특히 그냥 통통한 여자를 글래머라 하는 경향이 있는데 난 그게 싫어
-
악력 ?? 7
고등학교때 25키로 나오고 그이후로 안재봄
-
그냥 물려계세요
-
연대 정외 연대 행정 연대 사회 연대 불어불문 혹시 최초합컷 아시는 분 계신가요?...
-
뉴런vs아이디어 0
아이디어가 뉴런쉬운버전이라고하더라고요 아이디어완강후 뉴런을 듣는거...
-
레테크 대성공 11
다팔리면 기존에 비해 +10만덕이상
-
국내외국인 대다수가 짱깨나 섬짱깬데 왜 얘네한테 혜택을 과히게줘서 메디컬 명문대...
-
ㅈㄱㄴ
-
24 25 언매 0틀
-
아섹 2
스신발살까
-
https://orbi.kr/api/amusement/v1/rare/#1731 아니이거왜작동안함?
-
악력 45면 ㅍㅌㅊ임? 10
왼손 45 오른손 42 나옴
-
나도 이런 내가 싫어
-
의쌤들 질문 0
농축혈소판(PLT) 는 ABO 타입 안따라가죠?
-
레어확인 6
-
다 뺐기네
-
1.2배로 갚아드릴게요
-
2025라 써있는데 그냥 이거 들어도 되는건지
-
고려대 마지막 기회다 발표해라
-
최애의아이 완성 10
1빠
쌤 저번에 이뿌게댓글단사람 누구에오..?
그거 오르비에다 올려서 물어보려고 ㅎㅎㅎ
물2최고
뭘 좀아시는분이네요 ㅎㅎ
요약
1) 풀이..... 여기까진 인정하더라도 여기서부터는 비약이다.
2) 이렇게 해보자.
3) 불연속 함수여도 적분된다.
+ 계산도 너무 복잡하다. 그니까 적분식의 모양 바꾸고 추론해라.
끗
삐약삐약
엥? 위에 물2랑 다른분이었구나...ㅋㅋ;;; 같은분인줄...
그러니까 개꿀잼 물2 한 번 해보실래요??
ㅎㅎㅎㅎ
ㄱㅁ
쌤 아니면 불연속 함수에서 차라리 구간나눠서 적분설정한다하면 괜찬지안나요??
아래댓글참조 ㅎㅎㅎ
풀이 잘 들었습니다 감사합니다 !!
질문이 있는데 불연속함수가 적분가능하다는게 고등교육과정상으로 직관적일 수 있을까요..?
연속조건을 붙인 것은 오히려 해석학에서 리만적분을 정의할때 ‘countable 한 무한개의 불연속점’ 을 설명하기 어려워서라고 생각하는데 어떻게 생각하시나요??
그 역시 일리있는 말입니다
그렇지만 위의 내용의 포인트는 이과 적분에서 부분적분 하다보면 불연속 점이 한두개 나오기도 하는데 그경우 일일이 구간을 나눈 필요는 없다는 이야기 입니다
답변 감사합니다 ㅎㅎ
:)
가나형 표시해주면 더욱 감사
ㅇㅋㅇㅋㅇㅋ
문과 서러워서 우러욧
결론:이걸 어떻게 시험장에서 푸냐?
최상위권과 극상위권과 운상위권을 변별
계속 생각하는 거지만 이런 문제 출제하는 교수들은 진짜 ㄷㄷㄷ 대단하네요
하지만 이미 사교육 출제 시스템이 평가원 출제 시스템을 앞섰다고들 합니다. 자본주의의 위력이란... ㄷㄷㄷ
역시 돈이 최고네요 ㅋㅋㅋ
그러게요.. 어쩔수 없나봐요...;;
와우... 수준이 정말 높군여
죠아요
어디서 보나요?
무엇을요?
아 이이폰으로 접속하니까 안뜨는거엿네요!
ㅎㅎ 넵 1시간 짜리니까 각잡고 보시길...! ㅎㅎ
181130은 정말 ㄷㄷㄷ
굳이 이런문제를 내야하는지..? 너무어렵. 열심히 공부해도 풀 수 없는 문제 라는 느낌을 주려는게 의도인가
추론적해석 연습하라는 의도겠죠 ... ㅠㅠ
제가 듣는 인강쌤도 cos(x)가 적분하기 어렵지 않고 f(x)가 결국 연속함수이고 구간나눠서 미분하면 +1아니면 -1이어서 은근 괜찮아서 이렇게하면 풀이가 그렇게 길지 않다고 하시더라고요
저도 30번 문제를 계속 보다가 많은 강사분들이 극대*극대=극대 극소*극대=극소 라는 식으로 당연히 그렇게 될거다라는 거라고 시험장에서는 엄밀한 풀이가 시간상 부족했으면 이렇게 생각하고 넘어갔어야했다는 식으로 얘기해서 아리송했었는데
제가 혼자서 고민해보니까 극대에서 선대칭인 움직이는 함수(f(t)) 곱하기 극값에서 선대칭인 함수(g(x) 30번의 경우는 cosx)는 g(x)가 극값인데서 극대*극대=극대 극대*극소=극소 인거같더라고요 만약 f(t)나 g(x)가 극값에서 대칭이 아니면 f(t)*g(x)는 각각의 극값에서 만나는 지점에서 극값이 아니더라고요 이렇게 생각해도 될까요?
- 그 인강쌤이 누구신가? (그냥 궁금해서)
- 님이 말씀하신것은 부호를 양수로 고정하면 맞는 말인데 어차피 피적분함수의 극대극소를 판단하는 것이 아니라 넓이의 변화를 판단하는 거라서 핀트가 약간 다른것 같습니다. 그리고 위의 문제에서 g(x)=f와 코사인의 곱의 정적분 인데 섞어서 쓰셔서 혼동되기도 합니다.
장영진선생님이요!
나형도 해주세요ㅠㅠ
나형도 애매한 부분이 있었나요? ㅠㅠ 없었던것 같아서..ㅠㅠ
지금 까지 공부하면서 유일하게 이문제만 도대체 풀라고낸건지 싶은생각이들고 다시 가도 못풀거같다라고 생각햇는데 쌤 두번째 풀이 듣고 아 이거구나 싶네요 이렇게 풀지않는이상 시험장에서 현실적으로 풀수없을거같아요 ㅋㅋ 감사합니다 쌤
쌤!! 염치없겠지만 수업 후기댓글보니까 작년 6평21번올해6평21 번도 0의차수로다가 개쭬게 알려주신다는데 이것도 이 30번문제처럼 영상짤막하게 올려주실생각없으신가요.? 쌤풀이가 너무 궁금해요ㅠㅠ미천한삼수생의바램입니다 ㅠㅠ
엌ㅋㅋㅋ 그건 그 전에 4시간정도 개념학습이 있어야 해요 ㅋㅋㅋ
와.. 유명한강사 해설강의는 다찾아봤는데 이강의가 짱이네용 ㅎ