원순열 ~~
원순열 경우의수를셀때
한점을고정해놓고 한다는게잘이해가안가네요
한점을고정함으로써 나머지자리가구분이간다는데
그게잘이해가안되요
그래서 .. 저는 이렇게생각하는게이해가되서 이렇게했는데 생각해보니 위에꺼랑똑같은거같기도한데,,
문제를잘못풀겠네요;;
저는
원탁에 4개의숫자카드를 일단 배열하면 4! 인데
그각각의경우모두를 1이란숫자를 정북쪽에 오게 다돌려노면
나머지3자리에서 똑같은것이생길거고 결국 다른것의갯수는 3!이다 이다.
이게 제가이해한 최후의방법인데,,,
이렇게하고 문제를풀어봣는데 오늘, 정팔면체 에서 서로다른8가지색칠하는갯수구하는걸
못풀겠는데 ㅠㅠ
저방식대로의설명과, 고정시킨다는의미를좀이해시켜주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
리젠진짜없네 1
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 4
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
정확하고 이해하고 계신거 같은데요?
고정을 사람들이 어렵게들 말하는데 님께서 하시는대로 생각하는게 가장 쉬운 이해방법입니다.
여러가지 숫자들을(색깔이든 뭐든) 원탁에 배열할때 한가지 숫자를 기준으로 잡습니다.
그숫자를 원탁의 정북쪽에 놓고 원탁은 항상 고정시킵니다. 이때 나머지 자리들만 배열이 가능하고 그 배열 가능한 가지수는 한개 뺀거의 팩토리얼이다.
이때 사람들이 가장 많이 하는 질문 두개에대한 답변~
1. 왜 하필 아무런 한가지 숫자를 고정시키죠?
-- 원탁은 어떻게 돌려도 대칭적이므로 어쨌뜬 어떤 숫자든 원탁의 어느곳엔가 반드시 위치하게 됩니다. 이때 경우수를 세기위한 기준을 잡기위해 한가지 숫자를 기준으로 보자는 겁니다.
2. 그럼 원탁의 정북쪽에 고정시킨다고 하는 그 기준이 되는 숫자 자체도 여러개가 가능한거자나요? 원탁에 배열할 여러가지 숫자들중에 한개를 뽑기만 하면 되는거니까.. 그럼 한개뺀거의 팩토리얼 곱하기 원래 숫자 엔을 해야되는거 아니에요? ㅡㅡ
---- 이게 바로 사람들이 가장 많이 하는 질문인데요... .. 이건 경우수를 셀때 '기준을 잡는다' 라는 걸 잘 이해하지 못한 결과입니다
경우수는 '빠짐없이' 그리고 '중복없이' 세는것이 관건이죠, 그렇기 때문에 기준이 필요한 겁니다. 어떠한 경우의수도 이 기준으로 봤을때 하나의 카테고리에 속하게 되고 다른 어떤 경우와도
중복되지 않는다는걸 확실히 하고 싶은거죠
원탁에 숫자들을 배열한다고 합시다.( 1에서 10까지)
가능한 모든 경우들에 대해 1이란 숫자는 반드시 원탁의 어느곳엔가 위치하게 됩니다. 맞나요?
이때 모든 경우의 수들을 빠짐없이 중복없이 세기위해 그 모든 경우의 수들을 1을 기준으로 분류해보자는 겁니다.
배열가능한 어떤 경우라도 반드시 1이라는 숫자가 원탁의 어디엔가 있고(빠짐이 없게되죠? 모든 경우의 수들이 이 기준안에 속하게 되니까)
1이라는 숫자를 정북쪽에 고정해논 채로 (즉 원판이 고정된채로) 나머지 숫자들을 배열하게 되니까 중복은 있을수 없겠죠?
그럼 빠짐과 중복없이 가능한 모든 경우들이 카운팅 됩니다. 경우의수는 당연히 한개뺀거의 팩토리얼이 되죠
정북쪽의 1이라는 숫자를 다른수로 바꿔서 셀수도 있는거 아니냐고요? 안됩니다.
기준이 바뀌면 반드시 중복이 생기게 됩니다,
1을 정북쪽으로 놓고 셌을때 가령 2라는 숫자도 그 원탁의 어디엔가 위치하게 됩니다,
반대로 2를 정북쪽으로 놓고 셋을때도 1이라는 숫자가 그 원탁의 어디엔가 위치하게 되죠
결과적으로 동일한 원탁에서의 배열이 이 두가지 기준으로 봤을때 서로 달라보일수도 있습니다.(1을 정북으로 놧냐 2를 정북으로 놧냐에 따라서)
하지만 사실 같은 배열이죠~ 단지 우리가 그걸 돌려서 보다보니까 이런문제가 발생하는거고
그러니까 기준은 경우의수를 세는동안 절대 바뀌면 안된다는 겁니다. 즉 어떤 수를 정북으로 놀거냐는 상관이 없되
일단 정해진 그수는 경우수를 세는동안은 바꿔서는 안된다는 것이죠 기준을 잡기 애매한 정원형태의 원탁에서 굳이 우리가 정북쪽에 놓는 숫자를 기준으로 분류한것이기 때문에....
이만하면 설명이 됬으려나요 아니면 쓸데 없이 길어진건지는 모르겠네요ㅜㅜ