곡선의 길이 매개변수
첫번째. a부터b까지 루트 1+f'(x)^2 적분변수 x 적분하는게 기본식이고 이해가가는데
두번째.매개변수가 개입될때 예를 들어 t가 개입될때
x=f(t) y=g(t)
여기서 곡선의 길이를 적분변수 t로 적분한다면
식x=f(t)에 x에는 a를 집어 넣었을때의 t값을 c라하고 x에 b를 넣었을때 거기에 만족하는 t값을 d라한다면
곡선의 길이는 c부터 d까지 루트 1더하기 f'(t)의 제곱을 적분 변수t로 적분한값아닌가요?
여기서 질문이 왜 제가 본 참고서에는 그냥 매개변수가t일떄도 a부터 b까지 적분한것으로 되어있나요?
제가 뭘 놓친건지 모르겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잠온다<---- 씹상남자
-
https://orbi.kr/00070104327...
-
오야코동마렵다 3
으흐흐
-
요즘은 전반적으로 n제들 퀄리티 높아졌지않나요
-
그땐 ㄹㅇ 공통에서 승부를 본다는 느낌이 강했는데 (11~15까지 4점짜리에 걸맞은...
-
언매/미적/정법/사문 93/88/2/50/45or43 불확실 43 기준으로 입력,...
-
개념서 하나 봐야겠다
-
컴공은 문과아님 ㅋ?
-
작년 한양대 수리논술 합격생이 드리는 간단한 TIP입니다..! 0. 수험표는 알아서...
-
높공보단 훨 높겠지?
-
그게 바로 나 뿌듯
-
수학 0
님들 김깋이번 2025수능 확통 20,21,22번 3문제 틀려서 88점 받았는데...
-
마포대교 2
이거 쓴 사람 나와가지고 오르비에 인증해라
-
ㅈㄱㄴ 지인찬스?
-
언미물지 95 90 3 70 94
-
주말 이틀 알바 정도면 14
1학기에 복학하고서~내년 수능 때까지도 병행 가능하겠죠? 수능 전 1, 2주 정도만...
-
뭐 낮공 높공 그렇게 부르는거 있잖아요
-
국1수1영4지3물4지6 어디될까요?ㅠ 물지 ㅊㅂㄹ ㅠㅜㅜ
-
일단 현정훈t 시대라 들으려 하고 학교 수업시간에 못 들을 것 같은데 수업시간...
-
잘 모르는 분들 생각보다 많던데 서강대면 명문대인데 오ㅑ 그런거
-
짜파게티+치즈 짜치
-
연고공 가는데 과탐을 할 이유가 전혀 없어보이는데
-
지망과 텔그 99%라 반수할 대학 구경하러옴여
-
*다이어트는 알아서 적당히 안통통해 보일때까지 하는 걸로 1. 머리 남자면 두상에...
-
이과인게 죄인 세상이다
-
공교육의 정상화 2
(2004년 수능 외국어) 어… 공교육 정상화? 신 석 열
-
정시로 건동홍 되나요??..언매 미적 사문 지구이고 과상관없습니다...수학 실수...
-
언매 2 안되나 0
언매 1틀 85인데
-
섭웨랑 이삭을 둘 다 포장하는 삶정도면 플렉스 아닐가요..
-
직관력이 확 떨어졋어
-
진학사 8칸 추가합격 19
원래이래요..? 8칸 추합은 첨 경험해보는데
-
약간 나랑 다른 존재인거같음...
-
방학 때 두날개 사서 독학해야할듯요 물1은 시대라 들을 거긴 함뇨.. 사실 물1은...
-
급함
-
물리학2 6
-
돈이 사라져가
-
수분감 1
격자점 실생활 활용 문제 유기해도 ㄱㅊ?
-
텔그 71프로 뜨는게 진학사는 4칸인데 진짜 어디가 맞는거지.. 작년에는 외대 쓸...
-
디저트 추천 좀 2
방금 점심으로 떡튀순 먹었음
-
흐음
-
컨텐츠가 진짜 없긴한데 오히려 없어서 깡피지컬 싸움되니까 개인적으로는 좋았음 그리고...
-
현정훈 물2 2
내놔
-
우진 시럽!!
-
무려 6만원대...
-
이번 수능 미적 77점인데 가천대 논술 수학 많이 어려운편인가요..?
-
친구가 오르비는 디시급 아니냐고 하네; 일단 난 여자임
-
ㅈㄱㄴ
-
서점갔는데 기출문제집 만들어주는데가 마더텅밖에 없다네 그마저도 절판......
-
잘 팔리나요?
-
이정도면 생쌀인데
(x, y) = (f(t), g(t))
로 t에 대해 매개된 곡선이 있다고 합시다. (단, 이 곡선은 좋은 곡선이라고 합시다.) 그러면 이 곡선의 길이는
L = ∫_{from a to b} √(f'(t)² + g'(t)²) dt
가 됩니다. 이 경우의 특별한 케이스로, x = x 이고 y = g(x) 이면 - 즉, 주어진 곡선이 어떤 함수의 그래프로 나타나고, 이 그래프를 x축 좌표로 매개화하였을 때 - 질문하신 식이 따라나옵니다.
왜 이런 식이 나오는지를 이해하셔야 이러한 일련의 스토리를 이해하실 수 있으리라 생각됩니다.
곡선의 길이의 식에 담긴 핵심적인 아이디어는, 주어진 곡선을 아주 잘게 썰어서 각 미소곡선을 직선처럼 생각하는 데 있습니다.
구체적으로, [a, b]라는 구간을 아주 잘게 나누어 a = t_0 < t_1 < … < t_n = b 으로 쪼개면, [t_0, t_1], …, [t_(n-1), t_n] 이라는 n개의 아주 작은 구간들로 쪼갭시다. 그러면
∑_{k = 1 to n} √[ { f(t_k) - f(t_(k-1)) }² + { g(t_k) - g(t_(k-1)) }²]
는 주어진 곡선의 길이와 가깝게 됩니다. 이제 쪼개는 폭을 더더욱 좁게 만들면, 위 극한은 곡선의 길이에 해당하는 값으로 수렴하겠지요. 그런데 중간값 정리에 의하여 시그마 내부의 식은 사실상
√( f'(t_k)² + g(t_k)² ) Δt_k (단, Δt_k = t_k - t_(k-1))
과 같아집니다. 따라서 주어진 극한은 적분
∫_{from a to b} √( f'(t)² + g(t)² ) dt
로 수렴합니다. 그리고 마찬가지 아이디어를 y = f(x) 라는 그래프의 일부분에 적용하면 질문하신 식을 얻지요.