[2013.9] 21번 심층분석
맞추셨더라도 배울것이 많은 문제입니다.
공부많이하세요~~
마지막으로 6평 9평 다 역함수로 막 어쩌고 하는게 혹시 수능에도 나오지 않을까? 라는 생각도 드니까
더 열심히 공부해두세요 ㅋㅋ
(EBS 역함수 관련문제 다찾아서 풀어버리는것도 방법인듯 하구요. 그러면 안나오더라도 실력은 확실하게 늘듯합니다.)
마지막으로 이해원 모의고사 4회가 거의 완성되어서
다음주나 다다음주에 배포될듯 합니다. 다운받아서 공부하세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ임? 어디서 하는데? 나 연락할 애가 없어서 너무 심심하다 ㅜ
-
고조완관건제중 하나인데 여기 의대는 마이너과 못가나요?
-
나 생일임 7
-
의사=공공재 ㄷㄷㄷㄷㄷ
-
ㅇㅇ
-
알겠어 기하하면되잖아.
-
개인적으로 좋아해요
-
둘다 가격은 같음
-
국어 수학 과외 4
보통 커리가 어케 되나요 책은 쌤이 정하는 건가요
-
수학 좋아합니다.어디가 낫나요
-
아 재밌어 5
방학이 이래서 좋지. 애니 정주행 캬
-
강남갈까 대치갈까
-
의평원 자켜보고 전적대로 돌아갈려하는데 근데 하..약대로 돌아가기 너무 싫은데 그냥 지금 자퇴할까
-
현우진 시발점 9
시발점 할때 시발점 워크북하고 쎈이나 rpm같은 유형서 필수인가요? 아니면 워크북만...
-
원회에 의해 제삭된 물시게입니다
-
크리스마스 이브 감성도 무뎌질까?
-
경희대학교 유전생명공학과 25학번 단톡방 안내 안녕하세요 유전생명공학과...
-
이거 무조건 되나여??
-
오늘 폭식함 2
아이스크림 돈가스 콜라까지
-
3합 5.5면 장학 아예 없나요 ... 하
-
진학사 2
6시에 업뎃한다면서 30분 미뤘네 짜증나게....
-
알바끝 2
이제 엄마만나러감 히히 클스마스에는 가족과 :)
-
게시물에 의해 회원된 삭제입니다.
-
원과목 다시 살아남?
-
저녁여캐투척 6
대황덴
-
그런 느낌이네요
-
뭔가 심하게 괴리가 있는거 같아서요….지금부터 갑자기 몇배가 들어와야 저 칸수가 맞는데
-
고려대 변표 5
나온거임?
-
추천 부탁드려요 어법 1시간 독해 1시간 예정이에요
-
반대로 고이기도 쉽다는거 아닐까(대가리 꽃밭임)
-
뭐가 더 좋나요
-
대학로 괜히 왔네 ㅅㅂ
-
아오 야 야
-
얘네도 이브라고 놀러갔나
-
1. 지나친 나이차 이건 개인별로 나이 차에 따라서 양심이나 그런 게 아니라...
-
수시충이었다가 6광탈 후 재수 했는데 수학이 너무 안 올라서 아쉽네요. 고려대 꼭...
-
삶에 낙이 없네
-
돈내고 컨설팅 받지 않는이상 별 소용 없는듯 올해 수능성적 갖고 여기저기서...
-
같은 한국인 맞냐
-
글 올린시점보다 꽤 늦게 쓰여진 댓글은 걍 무시하셔도 될듯 굳이굳이 몇개월전 글에...
-
요즘따라 뭔가 5
뚜렷한 목표가 있어서 공부한다기보다도 그냥 남은게 이것밖에 없어서, 이거마저 안하면...
-
수시 했을텐데 특히 통사랑 국어 ㅅㅂ 다른거 버리고 통사랑 국어 몰빵하는...
-
지금은다기만일거야
-
글에 의해 삭제된 회원입니다.
-
이런 내일까지 오르비 끄고 겜하다 와야지
-
우리 눈치를 보고
-
책읽기로 대신할까
-
아직은 안됐습니다.
오... 감사합니다 ㅋㅋ 핵심포인트 1번이 찝찝했었는데 아주 그냥 콕콕 집어주시네요 ㅋㅋㅋ
넹 ㅋㅋㅋ
난만한님 찬양합니다
ㅠㅠ
오..핵심포인트 2번을 간과했었네요;;
넴!!
나형도 이글을 통해서 핵심포인트들 얻어가면 되나요...??
일부 도움 되는 부분이 있긴할거에요
이해원 모의 4회는 무료인가요...?
저 구입했는데 3회까지만 왔더라구요... ㅋ
근데 수학 정말 잘 하시네요... 배우고갑니다 ㅎㅎ
4회는 그냥 오르비 학습동에 pdf로 올립니다~
다운받아서 공부하시면 됩니다.
네... 감사합니다
잘봤습니다 감사합니다.^^
열공하세요!
그런데 f(x) = 3(x-a)^2 + k 꼴이라 하셨는데 어떻게
f'(3) =3을 이용해서 f(x)= 3(x-3)^2+3 꼴이 될수 있나요???
미지수 2개, 식은 하나 밖에 없는데..
아 f(3)=3이 있었죠 참 ㅋㅋ
넴 ㅋㅋㅋ 답변달고있는데 달렸네요 ㅠㅠ
f'(3)=3 , f'(3)>=3 그리고 문제에서 주어진 최고차항의 계수가 1인 삼차함수
임을 활용하면
이차함수 f'(x)는 (3,3)이 꼭짓점이고 최고차항의 계수가 3임을 알 수 있습니다.
따라서 f'(x)=3(x-3)^2+3 입니다.
잘보고갑니당ㅎㅎ
넵 ㅎㅎ
오오 좋네요 감사합니다 ㅠㅠ
열공하세요!!
이문제나 밑에올리신기출문제 문과도 풀수있고 풀어서도움되나요?
문과교육과정으로 풀수는 있는데....................
99.9%의 문과 수리나형 실력으로는 못풀듯합니다..
핵심포인트 3에서 fx-(3x-6)=(x-3)^3 임을 어떻게 알 수 있나요..?
9평때 맞긴 했다만 이런 해설 놓쳤으면 정말 아쉬울 뿐 했네요 감사 !
자 제가 말하는 것을 따라가 보세요.
1. x^3 의 그래프를 머릿속에 떠올리세요.
2. (x-2)^3 의 그래프를 머릿속에 떠올리세요.
3. 위의 그림에서 f(x)과 3x-6 을 빼면서 f(x)-(3x-6)의 그래프를 생각해보세요.
여기서 f(x)-(3x-6) 은 삼차함수 - 일차함수 이므로 반드시 삼차함수죠?
따라서 f(x)-(3x-6)의 그래프의 개형과 종합해보면 (x-3)^3 임을 알 수 있습니다.
수식으로도 가능합니다 모든 삼차함수는 점대칭이므로 대칭인 점을
원점으로 평행이동하면
y=ax^3+bx 라 잡을 수 있죠?
이 함수의 변곡점에서의 접선은 bx입니다.
따라서 빼보면 ax^3 꼴이 되는거을 알 수 있고 삼차함수와 변곡접선의 뺀 함수는
반드시 삼중근을 가진다는것을 증명할 수 있습니다.
(어떤 삼차함수)-(그 함수의 변곡점에서의 접선)= @^3 이런 꼴로 나온다는 말 맞나요?
그림보다는 수식이 훨씬 이해가 잘 되네요~감사합니다!
그리고 삼차함수의 대칭점이 무조건 변곡점 인가요?
네 모든 삼차함수는
평행이동하면
ax^3+bx이니 이 상태에서 모든것을 생각해보세요 ㅎㅎ
(여기서는 원점대칭이죠~)
이전부터 아리송했던 팩트들 한번에 정리하고 가요~~ 너무너무 감사합니다!
QnA 는 답변 언제부터 가능하신건가요?
머 2주동안 몰아서 해주고 계신다더니........
바쁘시다고 공지하시거나 기간이라도 적어주신다면 기다리지 않을텐데 ㅠ
으잉??? 거의다 달았는데요.. 지금 3일정도만 밀려있는데..
어디에 질문하셨는지 여기 링크해주세요
과외생한테 오개념 심어주고왔네요. 잘 보고 고쳐갑니다 ;;
ㅠㅠ 다시 가서 고쳐주시길!!
수리 굇수는 문제 하나를 봐도 보는 관점이 다르시군여 ㄷㄷ
굇수 아니에요 ㅠㅠ
잉 역함수 제일 약한데 ㅠㅠ
역함수 꼼꼼하게 공부해두세요.. 혹시모르니까요..
지...지린다
2013 일내시길 ㅎㅎ
캬 명쾌합니다. 역시 해원님이네요
ㅋㅋ 우린 수학과잖아요!!
좋은자료 인쇄해서 정리해둬야겠어요 감사합니다~~
f(3)=3, f'(3)이 3이상 이걸루 (3,3)이 변곡점인거 어떻게 아나요...? ㅠㅠ
난만한님 안녕하세요.
f'(g(x))g'(3)=1 이고, g'(3)<=1/3 이기 때문에, 3<=f'(g(x)) 이고,g(x)가 삼차함수의 역함수 이므로, 함수 g(x)의 값은 모든 실수이므로,
3<=f'(x) 이라고 할 수 있을까요? (가 조건으로 3<=f'(x)를 어떻게 구했나 궁금해요.)
그리고, 증가함수가 아니더라도, f'(x)와 g'(x) 가 -1 이 아니면, f(x)=g(x) 이면 f(x)=x 이다 사용할 수 있을까요?
읽어봐주셔서 감사합니다.
f`(x)가 - 인 경우는 왜 안따진거죠? f`이 3 말고 -3분에 1쪽으로는 생각 안해도 되는건가요?
그런데 사실 "최솟값"의 관점이라면 3<=f'(x) 는 f'(x)의 최솟값이 3이라고 할수 있지 않나요? x^2+5는 3보다 무조건 크지만 5를 최솟값이라고 하는 것 처럼요/