미분 투척 (6,9 중요문제 개념 반영)
제가 스캔이나 따로 어디다 글 적고 그러는 방법을 몰라서요... 여기다 문제 적을게요 ㅠㅠ 학교에서 심심할 때 만든거라.. 따로 종이에 적고 푸시길..
최고차항의 계수가 1이고 역함수가 존재하는 삼차함수 f(x)가 있다. f(x)의 역함수를 g(x)라고 할 때,
h(x) = f(x) (x<-1)
= g(x) (x>=-1) 가 모든 실수에서 미분 가능하며, 임의의 실수 a, b (a<b)에 대해 -2 인테그랄(a~b) h(x) dx < (a-b)*{h(a)+h(b)} 을 만족한다고 할 때, f(2)의 값은?
정답은 드래그!! 29
반응 괜찮으면 한개 더 올릴게요..
댓글에 해설 달아놨으니 스크롤 조심하세요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
심심함.........
-
아니메 추천좀 2
심심
-
기원 1일차
-
컴공 과탐2과목 3
2학년때 물화생지 1 다들었고 3학년때 공대는 물2화2 듣는게 입시에 좋은 영향을...
-
나 귀여워? 5
응?
-
으하하하
-
맥북vs 갤북 0
.
-
입시 상담소 20
요새 거의 매일 왔었는데 이제 진짜 기말 기간이라 한동안 또 못 올 것 같습니다ㅠ...
-
.
-
이거에요 여러분
-
한 과목은 가채점보다 실채점 백분위가 올라가있을 거임. 왜냐면 저도 작년에 그랬기...
-
툭하면 뭔 교과서 찢고 대학 안가겠습니다! 공부 안하겠습니다! 선언하고 갑자기...
-
롤 밸런스게임 5
승률 60 모스트3 파이크 조이 흐웨이 vs 승률 40 모스트3 노틸러스 알리스타...
-
악몽이어서가아님 행복한꿈이어서슬픔 그게현실이아님을알기에...
-
진지하게
-
수능 어떻게 바뀌었는지 쳐봤는데 정말 요즘 너무 어려워 졌네요 ㅋㅋㅋㅋㅋㅋ
-
어머니 왜 고기를 구우시는 거죠
-
괜찮은건가? ㅈㄴ 불안하네
-
슬퍼요 친구가 그런 선택을하려고 했다는 게… 손이 막 떨려요저는 괜찮은 줄 알았는데...
-
대학입학못한신분으로는 아무도안써줄듯 점수가 개높은것도아니고
-
ㅅㅂ 9
택배 받고 곧바로 개봉 직후 촬영 ㄹㅇ 내부 저런 상태임 우체국택배 ㅆㅂ
-
'자다'에서 온 말. 뒤의 '장'은 청유형 어미 '-자'에 모종의 접미사 '-앙'이...
-
홋카이도에서 쓸 만한 카메라 찾는중
-
남칭구랑 볼 건디 1번 2번 머가 조을가요??...
-
히히
-
달달한거업ㄱ나
-
별다방갈거야 3
갈거야! 뭐먹을가
-
시대 단과 1
대치 시대 단과 언제부터 신청받음요?
-
24 현역 57 -> 25 재수 89 (기하 81, 메가, 잔헉사 기준) 으로...
-
수학 6월(77), 9월(88) 둘 다 미적 3틀 -> 수능(62) 미적...
-
개버러지 같은 년...
-
애슐리 홀이랑 백화점 카페인데요. 애슐리는 평일 런치타임 주2일, 카페는 주말마감...
-
사지러인데 성적이 애매따치해서 중앙대 좀 소신인디요 교차 유혹이 너무 크네요 성대...
-
적백이인데 존나 까다롭길래 이거 무조건 컷 84다 ㅆㅂㅋㅋ 이러면서 풀었는데 물론...
-
영어 공부 0
고2 3등급 나오는데요. 대성 메가있는데요. 누구 커리 따라가는게 좋을까요?...
-
이기상쌤 한명 때문에 메가패스 고민중인데 전성오 선생님 한국지리 잘 가르치시나요?...
-
안녕하세요. 피오르에듀입니다. 17시 30분경 금일 예약 확정이 되신 모든 분들께...
-
처음 선행하는거예요
-
밥ㅇㅡㄴ안먹음
-
백분위 99 97점이면 할만할까요?
-
괜찮아문장듣고있는데 션티 오티보고 믿음직스러워서…
-
1컷 76 되지 않았을까 개인적으로는 6모 이상이였는데 재수생 + 의대생...
-
5등급 친구 과외 잡긴 잡았는데...
-
저 점수로 중대 가면 진짜 눈물 날듯ㅋㅋ…
-
현대 뉴 싼타페 기존 차는 주임원사님이나 탈 법한 노땅st였다면 이건 각짐과...
-
왜 나인임? 8명이고 9년도 안햇는데 왜 9? 아니면 나인이라는 다른 명사가 있나?
-
국어랑 영어는 된다고 해도 수학이랑 과학이 문제일 것 같은데.. 수학은 확통빼곤 다...
-
일련의 사건들로 신뢰가.....
-
물론 할 실력도 안됨뇨 수학은 해보고싶었는데 22 29틀은 예상 못했으
수리나형용인가요? 그리고 해설은....올려주실수있나요
아.. 그걸 안썼네요 죄송.. 가형에서 배운 내용을 의도한건데.. 나형은 아마 못 풀듯? ㅠㅠ 그래도 해설 원하시면 여기다 적어드릴게요..
아.. 전 나형 초보자여서 ㅋ 계속 생각해봐도 모르겟던데 나형은 못푸는문제였군여.. 위안삼아 포기하겟습니다 ㅋㅋ
넵..ㅋㅋ 열공하세요
그래도 해설은 달아주시면 감사합니다....20분넘게 쳐다보고있었거든요 ㅋ
댓글 밑에 새로 올릴게요.
변곡점이 들어가는 개념이고 글로만 적은거라 이해하기 힘드실 지도.. 죄송요 ㅠㅠㅠㅠ
f(x)가 (x+1)^3 - 1 아닌가요? 헷갈리네 ㅠㅜ
아니에요.. ㅋㅋㅋ 첫번째 조건에도 맞지 않는 듯
아아 ㅋㅋ ㅈㅅㅈㅅ ㅋ
===== 해설 =====
일단 두번째 적분식은 h(x)가 위로볼록이라는 조건이구요.. (사다리꼴 이용한 식 표현)
h(x)의 미분 가능 조건으로 f(-1)=g(-1)=-1이고, f'(-1)=g'(-1)=1/f'(-1)이므로 f'(-1)=1이란 것을 알 수 있습니다 (f(x)는 역함수가 존재하고 최고차항 계수가 1이므로 f'(x)=-1은 나올 수 없음 즉, f(x)는 전구간 증가함수)
여기서 평면좌표에 y=x그래프를 그리고 f(x)를 (-1,-1)에서 y=x와 접하는 그래프를 여러 개형으로 그릴 수 있습니다. 그 예로, (-1,-1)에서 y=x와 접하고 다시 x>-1에서 y=x와 만나는 경우, x<-1에서 y=x와 만나고 (-1,-1)에서 y=x와 접하는 경우, (-1,-1)이 변곡점이 되어서 f(x)가 y=x에 의해 (-1,-1)에서 뚫리는 경우 (다른 점에서 다시 안만나는 경우)를 생각해볼 수 있는데 첫번째와 두번째 개형은 무조건 f(x)든, g(x)든, x>-1또는 x<-1에서 변곡점이 생기게 됩니다. (f(x)는 삼차함수이므로 (-1,-1)에서 변곡점이 아니라면 무조건 다른 곳에서 변곡점이 있겠죠?) 삼차함수이므로 x=-1이 아닌 곳에서 변곡점이 생기게 되면 그 전,후로 무조건 위로볼록,아래로볼록이 바뀌게 됩니다. 따라서 두번째 조건을 만족하지 못하므로, 그래프의 개형은 무조건 세번째 그래프밖에 나올 수 없으므로 f''(-1)=0이고, f(x)와 (-1,-1)에서의 접선의 방정식을 연립하게 되면 삼중근이 나오게 된다는 것을 이용하여 식을 세우면 f(x)-x=(x+1)^3이 나오므로 f(2)=29가 됩니다.. (f(x)=x^3+ax^2+bx+c 로 두고 f(-1)=-1, f'(-1)=1, f''(-1)=0의 식 3개를 이용하여 a,b,c를 구하는 풀이도 가능합니다)
오 좋은 풀이입니다 ㅋ 처음에 잘못생각해서 ㅋㅋ
감사합니다..ㅋㅋ 열공하세요
아 참고로 f(x)뿐만 아니라 g(x)도 무조건 변곡점이 존재하게 됩니다.. 그냥 삼차함수를 대칭시킨 것 뿐이니까..
위로볼록인 함수는 역함수 취하면 무조건 아래로 볼록한가요~~? 도함수, 이계도함수 다 존재하고.,.
다른 함수는 잘 모르겠는데.. 삼차함수는 직관적으로 알 수 있지 않나요 ㅋㅋ