고2인데 죄송하지만 질문좀드려도 되나요?? 많은분들이 답해주셨으면
오늘 수능시험지공개되는거 기다렸다가
집에서 수학b만 뽑아서 풀어봤는데
100분다썼는데도 92점나왔습니다..
의대진학이 목표인데 수학100은 기본이라고 하던데
저도 그렇게알고있구요..
3학년때 100점 가능하겠죠..?
그리고 이번수학b난이도 어땠나요?
29 30번 틀렸습니다 아이디어가잘안떠올랐어요..
29번은 대충근접했는데 30번에서 노가다하다가 시간다쓰는바람에
결국 둘다 못풀었습니다..
29 30 멋진풀이아시는분 풀이도부탁드려요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가야지 2
가버렷
-
그냥 시간 때려박아서 풀어야 하나요.. 익숙해지는거 만으로는 시간 단축에 한계가 있는것 같은데
-
친구 만나야하는데요… 혹시 아신다면 답변 부탁드려요ㅠㅠ
-
이번에 둘다 안정으로 쓸 성적 나왔습니다 집은 수도권이라 가천한이 위치는 압도적으로...
-
더워 죽겠네
-
둘 중 한 명과 사귀어야 한다면?
-
군수생 달린다 1
수학공주 달린다
-
저러고 끝내서 프로필에 평점 보니까 납득이 감
-
7연승+5점차 클린시트 대승 ㅅㅅ
-
이제 2학년되는 정시파이턴데 모고는 보면 88-92나오는 어느정도 상위권...
-
으흐흐 할 일 있을때 오리비 표정이랑 딱 맞물려서 쓰기 좋음
-
소름돋아
-
네이버 뉴스? 유튜브? 인터넷커뮤?
-
수학 표점 2점 깠는데, 진초면 괜찮아 보임? 서강대
-
여기서 어떻게 중심각이 90도인걸 알수 있나요?
-
벌써 12월이당 2
시간 빠르네 ,,,
-
칸타타님 글을 모두 정독해봤는데 논리적 설명이 부족한 거 같아 반박한다 칸타타님은...
-
전 딱히 고등학교에 미련 없어요 비록 설대의 꿈은 날아갔지만 사실 성적부터 부족한...
-
올리브영에서 화장품 마케팅하면서 몸고생 상대적으로 덜한 남자로 살기 vs 먼지...
-
너말이야 너
-
고공의 꿈은 사탐런으로 날아가고... 설사과의 꿈은 cc로 날아가고...
-
ㅈㄱㄴ 국어 98 수학 96 영어 78 국사 5등급 물1 47 화1 50 어디가 나음?
-
제곧내입니다 지구 쌩노베인데 1년만에 수능 50 가능한가요? (원래 화학햇엇음)
-
교재패스를 살까 하다가 저걸 과연 다 들을수 있을까 싶어서요
-
생일 기념으로 덕코 좀 주세요 (덕코 줍줍) 대신 아가 시절의 저를 대신...
-
어디가실 거임?
-
ㄹㅇㅋㅋ
-
사실은 매번 수능마다 표점은 다 다르겠지만 일반적으로 물1,화1은 표점이 낮고...
-
특정 키워드 검색했는데 그 키워드 들어간 뻘글을 수십개 쓴 사람때문에 너무 거슬림...
-
수학 교사한명이 수1 수2 미적 확통 기하 다가르치나요 아니면 선택과목마다 담당교사가있나요??
-
더치페이가 거지근성이라 하는데 그럼 얻어처먹기만 하는 마인드를 가진건 대체 뭐임?...
-
좋은아침 11
아침이되니한결 마음이편해요
-
타코야끼 먹을거임
-
뇨 체를 만나고 달라졌음뇨 이제 나도 부드러운 사람임뇨
-
안냥 3
반가웡
-
미적틀 96은 1
백분위 100 가능성 아예 없는 건가.. 9평 100도 백 99 주고.. 이게 뭐야 ㅠㅠ
-
그리고 수학 1등급 이상 정도 되면 걍 수능 버리고 연논만 올인하는게 나을거같음...
-
흠
-
과외하고싶어요 0
피차 같은 미성년자한테 과외를 믿고 맡길 학부모가 존재할지... 뭐야 나도 고수익 알바시켜줘요
-
그분 근황 궁금한데 닉네임이 생각안남.. 강x 리뷰글 쓰시던 분이였는데
-
공대=>취업 테크후 40대에 수능판 복귀해서 역대급 저출산 물로켓 현역들 제압하고...
-
이 성적으로 경북대 부산대 문과 하위과 가능하나요??
-
부모님 감사합니다 열심히공부해서 대학갈게요
-
과탐 가산점 0
과탐 택1만 해도 가산점 적용되는 학교 있나요???
-
벌레다처먹을 11
버드기상
-
확통사탐인데 아무래도 수학을 진득하게 파는게 낫겠죠? 실전개념 -> 기출 -> N제...
-
수능 빌런 신고 7
존대 쓰니 잘 안 읽히는 것 같아 명사형어미로 썼습니다ㅠ 이번 수능 영어 때 뒷자리...
-
얼버기 6
오늘도 9시 기상 성공
-
6시간 자도 컨디션따라 정신 훼까닥 하는 편이라 대가리 컨디션 잘 생각해서 공부할거...
29번 : (PQ^2-P1Q1^2)+(PQ^2-P2Q2^2)으로 보시면 결과적으로 두 평면의 법선벡터의 단위벡터와 벡터PQ의 내적값의 제곱의 합입니다.
두 법선벡터의 단위벡터를 h1, h2로 보시고 시점은 통일하신뒤 시점과 두 종점을 포함하는 평면을 생각하세요. 벡터 PQ는 그 평면과 평행해야 합니다. 이루는 각이 작을수록 코사인값은 커지니까요.
크기가 크면 클수록좋으니 4로 통일하시고 풀어재끼면 24나와요.
30번 : 먼저 조건 (가)를 이용해 이차함수를 구합니다. 물론 최고차항 계수는 아직 알수없습니다.
조건(나)로 넘어가서 먼저 접선의 접점의 x좌표를 t라고 두시고 접선방정식 구한뒤 (0.k)대입하세요
그리고 h(t)=k로 정리하시고 h(t) 그래프개형그린뒤 서로다른실근의 개수가 3개라는 조건을 이용하면 이차함수의 최고차항 계수가 나와요. 방정식 h(t)=k의 서로다른실근의 개수가 접선의 개수인 이유는 애초가 t값이 접점의 x좌표였기 때문입니다.