[Daily OIS] 20일차 - 수열의 합
2022.07.17
업로드한 파일을 내립니다. 앞으로도 좋은 자료로 찾아뵙겠습니다.
감사합니다.^^
----------------------------------------------------------------------------------------------------
오늘은 노말합니다.
실수가 발생하지 않도록 차분히 풀어보세요. (난이도 : 일반 4점 수준)
안녕하세요? 오인수입니다.
검증된 OIS, 1~4일 간격으로 4점 문항을 올려드리고 있습니다. (3인칭)
출간된 OIS 모의고사와 단 한 문항도 겹치지 않습니다.
Daily OIS 20일차 - 수열
정답은 첨부파일에서 확인해주세요.
잘 풀어보셨다면 좋아요 또는 댓글을,
앞으로도 좋은 문항을 만나고 싶다면 팔로우를 해주세요!
오늘 하루도 잘 마무리하시기 바랍니다. 감사합니다.
(가기 전에 눌러주고 가세요♥)
0 XDK (+2,510)
-
2,010
-
500
-
흠.. 5
이게뭐지
-
질문 받아요 3
-
이거 뭐냐 ㅅㅂ 나 쓰라하시는대;;
-
2016년에 거론되던 저항권 발동 드가는거긴 한데 흠
-
국회의원 현행범 체포계획까지 있었는데 윤석열이 이거까지 할생각을 안했다고?
-
몇 수 앞을 내다 보신 겁니까 KICE여
-
한잔하고 주무시고있나
-
잠 좀 자자 2
아오
-
왤케 뒤가 구리지 뭔가 더 있어보이는데 음..
-
야준석은 찐따마냥 욕박는거밖에 못하는데 쇼맨쉽 goat의 행동은 역시 다르더라
-
무물보 16
여긴병원이야
-
지가 계엄령 지지하고 싶다고 했으면서 갑자기 피해자 코스프레는 뭐임 1
ㅋㅋㅋ지능 문젠가
-
누굴 잡아족치겠다고 계엄령을 여는거임 북한 얘기는 또 왜하고
-
담을 안넘은 죄
-
계엄령 자체로 근들갑 떨지 말라하는건 뭐지? 설마 그 뜻은 아니겠지?
-
추천 안받는다 이미 보고 왔다 ㅋㅋ
-
고2때부터 정시준비해서 작년겨울방학 때 김동욱 언매 체크메이트하고 이번년도...
-
저거 뭐임ㅋㅋㅋ
-
살아서 다행입니다
-
법적으로 이거 설마설마설마 가능하기는 한가여
-
영화본 느낌이네 2
윤즈 도파민
-
인구구조상 이제 30년은 진짜 먹을듯함
-
그냥 자러갑니다 0
잘자요~ 별일없길 ..
-
우선 저는 2차계엄이 가능한지, 해제 후 재계엄까지 쿨타임?이 필요한지는 모릅니다....
-
이거 프사하고시픔뇨 14
어떰뇨
-
대통령은 계속 계엄령 딸깍 하고 국회의원들 전부 본회의장에 텐트치고 계속 해제표결 딸깍 ㄱㄱ
-
나도 잘까
-
다음 대통령때 국회 법안 프리패스 시키려고하는거아닌가 이정도면 ㄹㅇ 뭐임뇨
-
1석은 이준석으로 밝혀져...
-
가짜뉴스 출처확인도 안하고 퍼뜨리고 스토리에 되도 않는 불안감 조성 ㅈㄴ 하고...
-
이미 25증원 예산 전액삭감에 의평원 인증 무력화 작업도 실패한지 꽤 됐는데 이제...
-
하.........
-
국회에 보수는 한동훈계하고 이준석계만 남을거 같음. 3
친윤궤멸 확정일듯.
-
일부러 수능 뒤로 잡은듯
-
절차상 국무회의 심의를 거쳐야 해제가 되지만 국무회의는 의결기관이 아니라...
-
다들 어디가,,,, 이렇게 라도 모여서 좋았다구,,,,,ㅠㅅㅜ
-
이정도는 해야 지구 1위 부자 해보는 거구나 부럽다….
-
윤통의 큰그림 0
국힘이 계엄령에 반대하게끔 하고 다시 지지율을 끌어올리기 위한 윤버지의 계획아닐까?
-
정확히 말하면 윤석열이 계엄 해제 선언 안하고 뻐팅기면 9
계속 계엄이 유지되는거임 근데 법상으로 계엄이 유지된다해도 국민이 그런거같지 않다고...
-
예나 0
잘자..
-
윤석열 어차피 무기징역엔딩인데 다음 무브 있을수도 있음 6
이미 무기징역은 확정임..
-
석열 스구루…
-
대박
-
ㅋㅋㅋㅋㅋㅋ
-
수만희인가 어디서 보기론 논술충원률 12프로정도던데 맞음? 올해 연대는2배하고...
-
곧 대통령이 되실 그분으로
-
빠꾸먹어도?
-
Sky가고싶은데 1
1사탐 1과탐(물리) 할거에요. 공대나 경영을 목표로 하고 있는데 사탐 과탐...
-
시험장에서의 체감 난도가 점점 덜 느껴지고 기억이 미화되면서 예측 컷이 점점...
ㄴ~ ㄱㅅㅎㄴㄷ~
맞으셨군요!
ㅋㅋㅋㅋ고품질 티끌 좋네요
n>=3 일때를 떠올리는 것은 발상인가요?
'대입하면서 관찰'하면 n=3일 때부터 규칙성이 생긴다는 것을 추론할 수 있습니다!
하 수열이 정말 착잡하고 어렵습니다… 9평 13번도 어케어케 풀었지만 거의 뭐그냥 체육해서 풀은것 같고 15번 틀리구,, 열심히 해야할것 같아요 수열
둘 다 시험장에서 마주치면 당황할만한 문제였다고 봅니다. 중요한 건 '어차피 풀 수 있는 문제'일테니 당황을 이겨내고 초연하게 풀어내는 것이죠!
물론 시험장에서 막혔다면 일단 넘어가고 풀 수 있는 문제부터 다 풀어내셔야 합니다.
좋은 문제 감사합니다.
제가 수열에 많이 약한데, 그나마 이렇게 n=1때부터 대입해서 귀납적으로 추론해서 답을 낼 수 있는 문제면 다행인데
그 뭐야 최근수능에 나왔던 점화식끼리 더한다거나 이런 발상이 필요한 문제로 나오면 자신이
없네요..근데 그정도 난도로 나오면 15번으로 나오겠죠? ㅜㅜ