수학적인 영감 떠오름
매개 변수에 관한건데, 보통 2차원 좌표평면에 그래프를 표현해야만 한다는 생각들을 하겠지만, x=t에 대한 함수, y=t에 대한 함수 이런 두개의 관계식이 있을때, t축을 xy 평면의 원점을 지나게 수직으로 도입하여 3차원의 공간을 만들어서 거기에 점들을 찍으면, 뭔가 2차원에서 ㅈ같이 표현되던게, 3차원에서 명확하게 드러날 '가능성'이 있다는 생각을 함. 예를 들면 원이 xy 평면에서는 그냥 동그란 원이겠지만, t축을 도입했을 때 마치 감자 꽈배기? 그런 모양으로 드러날 가능성도 있다는 거지. 물론 우리가 시각적으로 어떤 자료를 보고 이해할 수 있는 차원의 한계는 3차원적인 공간이 끝이겠지만, (3d는 생각할 수 있어도, 4차원은 생각 못하잖아. 그거 말하는 거야.) 그럼에도 불구하고 우리가 10차원, 100차원의 공간을 이해할 수 있다고 재밌는 하나의 상상을 해본다면, 좀 더 simplify의 가능성이 커지지 않을까?
그리고 좀 더 이 해석을 확장해본다면, 이건 언제까지나 유추에 불과하지만, 마치 2차원 평면에서 3차원 공간으로 사고의 틀을 확장했을 때, (그래프 차원에서)좀 더 본질에 대한 이해를 하기가 용이해지고, 쉬워진다는 사실로부터, 더 높은 차원에 대한 이해도가 직접적이진 않더라도, 간접적으로나마 함양된다면, 더 큰... 사고의 도약이 가능해지진 않을까? (2차원에서 보든 3차원에서 보든 4차원에서 보든 탐구 대상의 본질이 바뀔 것이라는 말은 아닌데, 3차원을 통해 보는 것이 더 쉽게 본질에 대한 이해를 시켜줌으로써 본질에 대한 접근을 2차원일 때에 비해 용이하게 만들어준 것처럼, 차원이 높아지면 이에 따른 탐구의 용이성, 노력의 필요성의 줄어듦 같은 효과에 의해 더 높은 수준의 이해까지 나아갈 수 있는 계기를 마련해 줄 수 있을 것 같다는 말임. )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4수는 선택 0
3수까지 했고 이번에도 개같이 망해서 4수할까 생각중임 현역 때는 공부 안 해서...
-
다들 그보다 후하게 예측해서 좀 인지부조화 걸렸음..
-
사설3에서 수능1 사설1에서 수능3 내가봐도 좀 이상함ㅋㅋㅋㅋ
-
국어 수학 2~3정도 영어 사문은 1~2정도(거의1) 화학에서 사탐런 하려고 하는데...
-
제일 중요한 건 3
집중력임
-
수능이 끝나고, 각 입시기관별 분석이 쏟아져 나오고 있습니다. 선택과목이 나뉘고,...
-
J는 검사인 Y를 꼬셔서 #~#
-
앞으로 과탐계의 쌍사는 화1물1이다 이상.
-
집밖은 위험하지만 그래도 노력해보기로 했음!
-
건동홍이 가능하구나 과목은 화작확통생윤사문이었음
-
휴 시간 옮겼다 4
점심시간 확보 완 옮겼더니 나타난 십자가??? 오...
-
쓰니들아 1
뭐해
-
기술:엔트로피 부호화 인문:가능세계 과학:개체성 주제통합:바나나 경제:오버슈팅...
-
내 이야기 아닌줄 알았는데 올해 사설 포함 모든 시험 중 수능을 제일 잘봄 이감...
-
ㅠㅠ
-
팔로우해주세요.. 맞팔해드릴게요..
-
한 번 포텐 터지면 이만큼의 효자 과목이 없는데 그 포텐 터지는 시기가 수학처럼...
-
날이 너무 춥다
-
아로하 들을 때마다 감탄함 게이아님
-
그냥 주인공이 스쿠나 먹어서 개쌔진다음에 저주들 패는 애니같은데 이게 뭔재미지
-
전전 가려면 둘중에 어디로 가야함??
-
ㄹㅇ 4년만에 하니까 운동 다이어트>>>>>>게임임ㅋㅋ 운동과식단으로살을빼보자
-
올해 막판에 상상 국바 월례등등 엄없회차 폼 비정상적으로 좋길래 잔뜩기대하고...
-
난지금약자인데 2
노약자석에앉고싶다
-
날짜만나오고 시간이 안나와요
-
ㅈㄱㄴ
-
마이크로스트레티지 2배 롱 들어갔다가 뭔가 쎄해서 바로 나왔는데 자고...
-
둘 중 어디 입시가 빡셀까요? 진로는 어디가 더 좋을까요?
-
일단 기하를 고르는 가장 큰 이유는 공부 조금하고 날로 먹기 위해서임 (뇌피셜)...
-
20,21살의 풋풋함은 사라지고 예뻐보이고 싶어서 대부분 성형이나 과한 화장으로...
-
지하철타고 편도 15분인데 한번더 하라는 신의 계시인가
-
그남들아 ㅋㅋ 동덕여대는 해방되지않는다 익이 ㅋㅋ 14
어그로 ㅈㅅ 이성적이면 동홍 낮은과 ㄱㄴ?
-
원래 만표는 23페이지 난이도로 결정되는데 중위권 학생들이 23페이지를 얼마나 잘...
-
예비 고3이고 생지런한 사람인데요 내신베이스(마더텅, 수특 한바퀴)이고 유전문제...
-
[이동훈t] 2026 이동훈 기출 교사경 편 예판 시작 ! 5
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
-
ㅆㅂ 톰 마타 둘다 놓쳤노
-
수학 22 26 30을 다풀어놓고 실수땜에 11점을 날리기 진짜 정신병걸릴거같다.....
-
과탐 2개셨던 분들 -> 사탐 하나 낄 의향 다들 있나요
-
재종 장점 5
재종다니면 어떤점에서 좋은가요? 내년에 수능을 볼 것 같은데 독학할지 재종갈지 고민되네요.
-
경제 사문 만표 73 기원 ㅋㅋ
-
놀랍구만
-
1너무많이 나와서 멘탈 박살남 ㅋㅋㅋㅋ
-
제발
-
과탐 가산점 안 주는 13
대학 있나? 스카이 서성한에서 고대 인문계열은 과탐 가산점 주나?
-
진짜 ㅈ고인것같은데
-
수능때 2틀해서 45 ㅅㅂ 하
-
남자고 키 187cm 82kg면 돼지임??? 헬스하는 몸이고 체지방률...
-
경북대 수의예 0
논술 걍 가지말까? 붙여주면 기어가긴 하는데 3명 뽑기만 하는데 컷 ㅈㄴ 높을듯...
너무 대충 써서 정리가 잘 안됨
x=f(t)에서 y좌표는 어떡하나요 그럼
... 뭐 그건... 알아서 잘 엮여 있겠죠
(f(t),g(t),t)를 만족하는...
근데 원이 ㅈ같으신가요
ㅋㅋ 아 그 ㅈ같음을 이해시키려 했다면 제 머릿속에 있던 사고과정에 쓰인 전제를 다 썼어야 했는데 그러질 못했네요.. 너무 대충 써서 ㅋㅋ...
저게 그거 잖아요 작년 6평 가나 지문 중에 (가)지문
? 아닌데요
맞음
‘날아가는 야구공은 물론이고 땅에 멈추어 있는 공도 시간은 흘러가고 있기에 시공간적 궤적을 그리고 있다.’
t는 시간이 아니라 변수입니다. 님은 수능 국어 공부하는 시간을 좀 줄여야할듯. 너무 많이 보셔서 그냥 사고가 그 내용쪽으로 굳어진게 아닌지... 기분 나쁘게 생각하지 마시고 진지하게 생각해보셔야 할 듯? 그리고 본인이 틀렸을 수 있다는 생각도 해보시고...
저 표현 자체가 R^3에서는 점으로 표현된 것이더라도 R^3 X T에선 점이 아닌 직선이 될 수도 있다는 걸 의미하는 건데 T가 시간의 집합이 아니므로 다른 것이다 ㅋㅋㅋ…
국어 공부 하루에 1시간밖에 안하니깐 걱정은 안하셔도 될 것 같습니다.
초딩이 등차수열 합 생각해내고 자신이 대단한 발견을 하였다고 우쭐해하는 모습을 보는 것 같아서 댓글 달았는데, 본인이 말씀하신 대로 국어를 못하셔서 그런지 이해를 잘 못하신 것 같아요.
수학 잘하시고 자부심도 나름 갖고 계신 거 같은데, 너무 거기에 도취되신 게 아닌가 싶습니다.
ㅋㅋㅋ 발악하는게 귀엽노
네 틀린 말이 없어서 더이상 반박 못하시겠다는 뜻으로 받아들일게요 극찬 감사합니다
어느 측면에서 아닌지 설명해주시면 생각해보겠습니다
데이터 분석같은거 할때 쓰지않나
특성을 잘드러내는 변수를 찾는 원리?
뭐라해야하지
음... 그냥 생각나는대로 쓴거라 ㅋㅋ..
실제 미분기하학에서 사용하는 방식과 유사하네요! 좋은 아이디어입니다.
와우.. 전문가분한테 칭찬 받으니까 기모찌하네요 ㄷㄷ...
말씀하신내용을 간단하게 요약해보자면 2D의 어떤 도형이 사실은 3D에서 정사형시킨 도형이다 라는 생각을 하신것 같아요. 이런 아이디어에서 3D 스캐너같은게 나올수있었다고 생각합니다. 더 많은 아이디어로 세상을 밝혀주세요
어려워서 안쓰는게 클듯
오 저랑 굉장히 유사한 생각을..