[칼럼]현직 출제자가 말하는 수학문제가 만들어지는 과정
안녕하세요. 방구석출제자입니다. 칼럼을 써보고 싶었어요!
많은 분들이 [수학문제가 만들어지는 과정]을 궁금해 하시더라구요! (수험생한텐 필요없...)
출제자 분들마다 다르겠지만 제가 여기저기서 듣고 배운, 혹은 제가 사용하는 방법들에 대해서 설명해볼게요!
이 칼럼을 읽고 나면 수학문제를 어떤 시선으로 봐야할지에 대한 나름의 기준이 잡히지 않을까 생각합니당
1. 단원을 나눈다.
고등과정의 수학엔 여러가지 단원들이 있습니다. 크게는 수1, 수2, 미적, 기하, 확통 이 있을것이고 각 단원별로 세부적
인 소단원들이 있겠죠. 이러한 단원을 구분하는 것은 문제를 출제할 때 굉장히 중요합니다. 여러 단원에서 적절한 빈도
출제해야하는 것은 물론 [단원]별로 학습목표나 추구해야하는 방향이 다르기 때문이죠.
학생들도 수학을 그냥 따라가며 배우기 보단 전체적인 큰 틀인 [단원]을 생각하면서 문제를 풀면 좋겠어요!
'이 문제는 어떤 단원을이지?', '이 단원에서 중요하게 다뤄지는것은 어떤 개념이지?' 를 생각하며
문제를 푼다면 좀 더 넓고 정확한 시각으로 문제를 볼 수 있겠네요.
2. 소재를 생각한다.
소재라는 것은 다시 말하면 [내가 학생들에게 전달해주고 싶은 것] 입니다.
수2 문제를 만들 때는 [삼차함수의 점대칭적 특징] 이라던가 [이차함수에서 접선의 기울기가 가지는 특징] 처럼 수2를
배우면서 알아야 할 것들을 소재로 생각하는거죠. 내가 만든 문제를 풀면서 학생들이 이러한 [소재를 학습] 하길 바라
는 겁니다.
물론 평가원이나 모의고사는 [학습]이 아닌 [평가]의 목적을 가지고 있지만 어쨋든 [소재]를 평가하는 거자나용
미리 학습해 놓는다면 평가가 목적인 시험에서 걸러지지 않을 수 있습니다.
3. 조건을 생각한다.
소재에서 조건이 나옵니다. 하지만 한 소재에 하나의 조건만이 가능한 것은 아닙니다.
예를 들어
[삼차함수가 변곡점에 대하여 대칭이다]이라는 소재에서 조건을 주고 싶으면
' 함수 f(x)가 점 A에 대하여 대칭이다' 처럼 직관적으로 줄 수도 있고
'f (x)+f (4-x)=4' 라는 식을 주면 함수 f (x)가 점 (2, 2)에 점대칭이 되죠.
이거 외에도 한 소재에 엄청나게 많은 조건들을 쓸 수 있습니다.
그렇다면 학생은 어떻게 해야 할까요.
학생은 조건->소재를 파악해야합니다. 역방향으로 생각해야하는 것이죠. 항상 사고를 역방향으로 하는것은
어렵습니다. 그래서 수학 문제가 어려워지는건데요!
이를 수월하게 하기 위해선
1. [소재]부터 확실하게 배운다 (우리가 흔히 말하는 [개념학습]입니다.) 애초에 [소재]를 모르면
조건을 아무리 읽어도 [소재]를 유추할 수 없습니다.
2. [조건]에 익숙해진다(이미 본 [조건]들은 복습하고 새로운 [조건]은 학습하는거죠
(수능은 비슷한 조건들이 계속 나오기 때문에 조건에 익숙해 지는 것이 중요합니다)
3. 새로운 [조건]이 나오면 어떤 [소재]일지 유추한다.
흔히 말하는 킬러를 푸는 방법입니다. 킬러같은 경우는 익숙한 조건이 잘 등장하지 않습니다.
하지만 [소재]를 명확히 알고 여러 [조건]들에 익숙해진 상태라면 새로운 [조건]도 소재랑 연관지을 수 있습니다.
4. [조건]을 변형한다
여러분이 새롭다고 느끼는 [조건]들은 사실 이미 나온 [조건]들을 변형한것이 대부분입니다.
식변형을 하거나, 기존의 상수를 변수로 주고, 반대로 변수였던것을 상수로 바꾼 다던가.
원래는 상수 3으로 줬던걸 함수로 바꾼다던가... 여러가지가 있죠.
예시)
~~값이 자연수가 되는 x의 개수가 7이다 >>>>>>~~값이 자연수가 되는 x의 개수를 f(n)이라 할때....
요런 식입니다.
학생여러분은 변형되는 조건들을 파악하는 능력을 기르길 추천드립니다. 위에 서술한 내용과 마찬가지로
[조건]들을 많이 보고 익혀야 합니다.
오늘도 새벽에 문제만들다 힘들어서 오르비 들어와 봤는데 나름 재밌네요 ㅎㅎ
누군가에겐 이런 칼럼이 도움이 되었으면 좋겠습니당. 다음 칼럼 소재 추천해주세용~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다람쥐같으심
-
올해 세지 48 백분위 97, 지구42 백분위 96이고(실수1) 지구 서바 보통...
-
미성년자라 부모님 동의있어야한다네요 산 지 얼마안됐는데 말씀드리기 좀 그래서,,...
-
조경학과 다녀요(아님)
-
보추가 되고싶은 밤이다 15
하와와 오토코노코가 되고싶지만 고기 3인분 구워먹고 살 디룩디룩 찔 예정
-
여친이 너무 앵김뇨 13
앵드레 킴임뇨
-
오늘 일어나서 지금까지 하루종일 했는데 에2 유지임 시발ㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹ
-
진학사 2
평백 91인데 (수학을 잘봄) 진학사에서 환산점수했을 때 평백 93 94인...
-
언미생지기준 백분위 97 100 2 95 100
-
피의공부머신출발 3
ㄱㄱㄱㄱㄱㄱㄱㄱㄱ
-
큐브에 더 이상 유명한 아이돌 없고 비투비 아이들 다 재계약 안하니까 프미나가 만약...
-
오늘은 올릴게 없다...
-
열심히 만들었는데 댓글이 없어서 울었어...
-
그래서 칭구를 모사귐뇨
-
연대논술 (연세대논술) 2차시험 크게 이변이 생기지 않는이유 0
https://m.blog.naver.com/kcmjungmin36/223677192773
-
서울대 의대 교수들이 보여준 모습이 워낙 실망스러웠던 반면에 세브란스 교수님들의...
-
여기서라도 친구 만들고 싶은데
-
맨날 확통 50점받던 애가 수능 확통 다 맞고 70점된거 보고 좀 억울해짐 2
얼마나 쉬운거임 대체..ㅎㅎ
-
말출 1주일전 5
짬평가좀
-
찬우야이! 6
눈이 오면, 임철우.
-
올 수 확통에서 4점 틀리는 거보다 미적에서 12점 틀리는 게 훨씬 잘한 거 같은데 ㅋㅋ
-
미적 1컷 92 국어 언매 1컷 95 국어 화작 1컷 97 1등급 애들이 틀릴...
-
4cm됨뇨
-
n티켓 난이도 3
n티켓 난이도가 어느 정도죠. 쉬4 ~ 준킬?
-
엑셀딸깍아니노 2
좀 해라
-
홍대 가능? 2
제방
-
………성적은 반짝거리면서 텔그 아래에서 (문과를 말하는 성적) 간간히 문과를...
-
얼부기 10
-
생명 3컷 1
3컷이 36이 될 확률 ... 아예 물 건너 갔나요 ㅠㅠㅠㅠㅠ ??
-
여기서 15%씩은 전부 떨어진다고 보는게 마음 편한가요?
-
아니 화장하는 것 자체는 알겠는데 왜 화장하고 이마대고 엎드려서 자요? 화장...
-
해당 기업에 최소 몇년 근무해야함?
-
원점수 기준 어떤게 더 낫나요? 연고대 지망 중이고 서울대까지 도전하고싶습니다.
-
모아나 보러갈가 5
흠
-
한완수 한완기 0
뉴런 수분감했으면 한완수 한완기 안하고 바로 이해원n제 풀어도됨?
-
세계사 0
동아시아사는 해보고 매우 만족스러웠는데 세계사도 비슷한가여?? 특성이나 장단점 알려주세요
-
서울대 자연대 , 상경계열 전공 육군 후방에서 복무중 질문 자유롭게 ㄱㄱ
-
갔다오고 나서 너무 피곤해가지고 아 다신 안 갈거야!! 했는데 막상 내년에 가고...
-
뭐야 수퍼소닉으로 오랜만에 컴백해서 반응 좋았고 삐끼삐끼나 뭐 그런 걸로 뜨기도...
-
재수안하고 버틸수있으려나이거
-
레전드기만 8
-
아 3
인생 빨리 머리털 깎든가 해야지
-
이별안하는법 3
이건 드립치면 죽을듯
-
그나마 남초팬덤이던게 아이즈원 프미나였는데
오 만들어보고싶어요