칼럼1) 알아두면 쓸데있는 다항함수 적분공식 총정리
제 첫 번째 칼럼 주제는 다항함수 적분공식 총정리입니다.
적분공식들은 계산을 훨씬 가볍게 해주고, 빠르게 점검할 수 있어서 검토용으로 쓰기에도 좋습니다.
사실 다항함수 적분 공식은 엄청나게 많습니다. 하지만 그걸 다 알 필요는 전혀 없습니다. 실전에서 쓸만한 공식 몇 가지만 체크하고 넘어가면 됩니다.
이미 아는 게 나왔다면 '아 맞아 이런게 있지~' 생각하며 복습차 확인해주시고, 처음 보는게 나온다면 '이런게 있구나 알아둬야겠네' 생각하며 읽어가시면 됩니다.
1. y=xn 꼴
초록 넓이 : 노란 넓이 = n : 1
(각 직선들은 축에 평행하게 그려져야 하고, 최고차항 계수가 1이 아니어도 성립합니다.)
모든 n차 다항함수에 대해서 성립하지만, 사실상 수능에서는 이차함수의 경우에만 유용합니다. 삼차부터는 저도 써본 적이 없어요.
일차함수 넓이 구할 때 적분하지 않잖아요? 비슷한 느낌으로 이 공식을 알면 이차함수의 경우에는 많은 경우에 적분을 할 필요가 없어요. 모든 이차함수는 곡면아래 넓이를 저런 식으로 도출해 낼 수 있기 때문이죠.
이차함수의 경우 위 상황에서 초록부분과 노란 부분의 넓이비는 2:1이며, 이를 다음과 같이 인식할 수도 있습니다.
표시한 전체 직사각형의 넓이 x 1/3 = 곡면 아래넓이
예를 들어보겠습니다.
위 경우에서 1에서 2까지 이차함수의 적분값을 구하는 상황입니다. 첫 번째로 할 일은
표시한 부분의 직사각형을 보며, 직사각형의 넓이가 2이기 때문에 곡면 아래 넓이는 1/3 배인 2/3임을 구하는 겁니다.
그래서 색칠한 빨간 부분의 넓이는 2/3이고, 적분값은 노란 영역의 넓이인 1까지 더해줘야 하므로 답은 5/3입니다.
이와 같이 접근하면, 이차함수 적분 문제에서 적분 구간이 축을 포함하는 상황은 전부 빠르게 처리할 수 있습니다. 최고차항 계수가 1이 아닐 때도 당연히 성립합니다. 다만, 이차함수의 적분 구간이 축을 포함하지 않는다면, 대체로 그냥 적분하시는게 더 빠를 겁니다.
한편, 다음과 같은 오해를 하여 삼차함수에서 이를 쓰려고 하시는 분들도 가끔 있습니다.
"이 경우엔 3:1 ?"
은 절대 아닙니다. y=xn 꼴에서만 사용할 수 있는데, 위 상황은 그런 꼴이 아니기 때문입니다.
그런데 y=x3꼴의 적분을 묻는 경우는 거의 없잖아요? 그래서 앞서 말했듯이 삼차 이상부터는 거의 쓸 일이 없습니다.
2. 이차함수
너무 유명한 공식이죠. 인지해야 할 점이 딱 두 개 있습니다.
1) 둘러싸인 넓이는 오직 x좌표 차이에만 관련이 있다!
2) 색칠한 넓이가 반띵이 되는 곳은 이차함수의 축이 아니라 알파와 베타의 중점 부분입니다. 당연한 내용인데, 가끔씩 실수가 나오기도 하므로 유의하세요.
한편, 공식은 아니지만 알아두면 정말 많이 쓰는 이차함수 넓이 관계가 두 가지 있습니다.
1) 위 경우처럼 길이비가 각각 2:1일 때 초록 부분과 파란 부분의 넓이가 같습니다. 이는 해당 적분 구간의 적분값이 0임을 의미하기도 합니다. (초록과 파란 부분의 넓이는 같은데 부호가 반대니까요.)
이는 삼차함수의 2:1 관계와 관련이 있습니다. (이 말은 이해가 안 되시면 그냥 넘어가셔도 좋아요.)
2) 위와 같이 초록색 적분구간이 이차함수의 축에서 시작할 때, 길이비가 그림처럼 1:루트3으로 만들어진다면 초록 부분과 파란 부분의 넓이가 같습니다. 이는 삼차함수의 1:루트3 관계와 관련이 있습니다.
두 경우 모두 이차함수의 최고차항 계수와 관계 없이 성립합니다.
3. 삼차함수
두 가지가 있습니다. 첫 번째는 매우 유명한 상황이죠. 직선 대신 이차함수인 경우에도 똑같이 성립합니다. (삼차함수와 이차함수가 알파에서 한 번 만나고 베타에서 접하는 경우라면 말이죠.)
이와 연관지어 생각해볼 만한 관계가 있는데요,
위 그림처럼 X좌표 길이 비가 1:3이 될 때, 초록 부분 넓이와 파란 부분 넓이가 같습니다. 사차함수의 3:1 관계와 관련이 있습니다.
두 번째가 굉장히 유용한 공식인데 의외로 잘 알려지지 않았습니다. 변곡점을 지나는 직선과, 삼차함수로 둘러쌓인 한 쪽 넓이가 다음과 같습니다. 두 쪽은 거기에 2까지 곱해주면 되겠죠. 양쪽 부분이 넓이가 같을테니까요.
4. 사차함수
역시 두 가지입니다. 솔직히 말해 이 두 공식은 요즘 평가원에선 보실 일이 없을거고(과거에는 나온 적이 있긴 합니다.) 사설이나 내신에 유용할 듯 하네요. 넣을까 말까 고민을 했으나 아는 사람은 다 안다는 공식이라 넣었습니다.
경험상 '둘 중에 뭐가 1/30이었지??!' 하면서 맨날 헷갈리는데, 공통접선 놈이 1/30이라고 확실히 알아둡시다.
제가 준비한 공식은 여기까지입니다. 소개드린 공식 외의 것들은 좀 과한 느낌이 있습니다.
한편 공식이 전부 '몇 분의 (b-a)의 몇 승' 느낌으로 생겼는데요, '몇 분의'에 해당하는 부분은 암기구요 '몇 승'은 쉽게 기억하실 수 있습니다. n차함수에 대해 n+1이 지수 자리로 가기 때문이죠.
칼럼은 여기까지입니다. 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
동덕여대 0
지방사람인데 동덕여대 쓰고 서울 올라가서 재수 어떤가요..너무 도박인가
-
괜찮나요?? 다른걸로 바꿔도?
-
걍 나군 간다는 생각으로 7박고 가다 스나이핑 11 ㄱㅊ?
-
ㄱㄱ자연계열임
-
올해 연대 문과 1
이거 연경영 706점인데 발뻗 가능?? 연대 이번 막판에 전반적으로 컷이 낮아져서...
-
저는 버거킹이 젤좋음
-
ㄹㅇ 가장 중요한 국어 수학을 봐야하는 시간이 하필 아침밥먹은 직후오전,,,,...
-
저녁 뭐묵지 4
흠..
-
다군 칸수 4칸 0
다군 칸수가 현재 이렇게 뜨는데 이런 경우에는 어떻게 하는 게 맞을까요? 최초컷이던...
-
뭐가 더 현실성 있을까..
-
서울대에 불교학과가 있었나 했는데 불어교육이었구나 ㅋㅋㅋ
-
내년 수능 과탐도 안미끄러지고 잘볼거라고 생각하는건 위험하죠? 사설은 너무 과하게...
-
나 진짜 과제할거요 만약 오루비를 1월1일 안에 들어온다면 그리고 그 캡쳐를...
-
ㅈㄱㄴ
-
계정 헷갈릴것같긴 한데 친목질은 하고싶고...
-
충북의 0
너무 안좋은 말이 많넹
-
가나중에 붙으면 좋겠당
-
고옥고옥 민족고대 고옥고옥 민족고대
-
오뿌이들 다들 싸랑해요~♡
-
히히
-
정말 상남자다 나
-
05나 06이 저런질문하고 댓글달았으면 짜증났을거같은데 어리니 그냥 귀여움 ㅎ.ㅎ
-
애초에 지원 가능 풀 자체가 줄었는데 (국잘, 영1, 교차 불가능) 계속 뭐 언급...
-
4칸 0
낙지 4칸이고 불합격라인에서 두번째인데 아예 희망 없을까요?? 나군에 상향을...
-
낙지 타 학과 싹다 지우고 깔끔하게 보기 가능
-
가군… 1
도박함해봐?
-
재릅 전 닉이 뭐였는지 실토하십쇼..
-
생지4뜨다 사탐런조져서 나름잘나오긴했지만 요번엔 쫌 빡세질거같기도하고...
-
커리는 강민철쌤 커리 탈건데 매월승리가 더 좋다길래 살까하는데 괜찮나요?
-
다음.
-
자유라는 단어도 좋고 여튼 자전에 로망잇어요 물론 현실은 대학 5년이라고는 하지만...
-
진짜 개지림 반박 시 본인 자살
-
들어보신분들 어떤가요??? 볼륨이 꽤 크던데 얻어갈거 많나요???
-
예비고2 수학 0
예비고2인데 마플시너지 다음으로 풀 문제집으로 고2자이스토리,너기출,고쟁이 중에 뭐가 좋을까요?
-
pf면접 형식인 걸로 아는데 많이 어려웠나요? 면접 학원은 너무 비싸서... 혼자...
-
다군 어따 쓸까 2
2칸 3칸 5칸 8칸
-
3합11ㄱㄱ
-
새삼 틀니딱댄거 실감남...
-
무휴반 개개갸개개 망해서 (영어 밀려씀) 걍 현재 대학 다닐거 생각하고 다 스나로...
-
강남 8학군 일반고, 1학기 3.14에서 2학기 2.27로 오름...
-
ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ
-
안정 5칸 1
5칸이고 진학사상으로 최초합이긴 한데 6명 뽑는 과 안정으로 쓰는 건 에반가요…?...
-
서울대 국어교육과입니다. 이미 관악에 자취방도 계약해놔서 못붙으면 굉장히...
-
1학년 학고에 휴학 등등 하면 학점 조져질텐데 반수 실패하면 조진 학점으로 2학년때...
-
추천해주신 상향카드가 텔그에서는 19퍼센트로 잡히는데 이거 써도 되는걸까요…? 추합...
-
그야 원서를 안썼으니까. ┓┏┓┏┓┃\○/ ┛┗┛┗┛┃ / / ┓┏┓┏┓┃ノ)...
-
아무도모르는 존재감없는신입생이 되도록해보죠
-
롤체중독자 2
에빵단 도착햇음뇨..
마지막 공통접선 공식 올해 왠지 쓸일 있을 느낌
본문 이차함수 부분에서 언급한 문제입니다!
https://orbi.kr/00061780743/%EC%88%982%20%EC%A0%81%EB%B6%84%20%EC%9E%90%EC%9E%91%EB%AC%B8%EC%A0%9C
기대 안하고 들어왔다가 생각보다 신박한게 많아서 개추 + 팔로 박고 스크랩 떠서 갑니다!
바로 스크랩
삼차함수 2번공식이 진짜 자주쓰이는데 생각보다 사람들이 잘모름ㅎ
그러게요 되게 유용한데 은근 안 알려짐
좋아요를 누를 이유가 있는 글..!
좋은 글 감사합니다 :)
삼차함수 변곡점 지나는 공식하고 그외 언급하지 않으신것들은 최고차항이 필요없나요?
최고차항은 전부 곱해줘야 합니다! 어차피 다 곱해줘야 해서 외워야 할 부분만 적은거였는데, 언급을 제대로 할 걸 그랬네요 ㅜ