작수 15번 풀이 (10초 컷/수학황 환영)
칼럼쓰는 06입니다
엄청 신박한 풀이로 푼 것 같아서요
기본방법이라 생각했는데 아닌것 같아요 ㅎㅎ
(ㄱㅁ 아닙니다 선배님들)
이 문제가 얼마나 쉬운지 증명해드리죠 쿠쿸
뿅!
질문 받습니다 캬캬
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
초딩인가 중딩때 인형뽑기 오락실 잠깐 유행하고 그뒤로 싹 사라졌는데 디시 우후죽순생김
-
군대 가면 생각보다 내 학벌이 나쁜 게 아니어서 놀랐네요. 1
지방 국립대 문과 출신이라 속된 말로 하위 10%일 줄 알았는데 군대에서는 이것도...
-
슬슬 합격발표일을 위한 마음의 준비나 해둬야겠군요 설날이 코앞인데 부디 어깨 펴고...
-
어우 기하가 재밌는데
-
고등수학 개념서 2
기본정석이랑 숨마쿰라우데 중에 어떤게 더 낫나요? 완전 노베고 처음 시작하는 거예요
-
잇올 대체공휴일 4
잇올 대체공휴일이나 임시공휴일에 자율등원인가요?
-
이대남들 다 그런거 아나요? 배운다면 어케 배우죠..?
-
이번에 듣보잡 샀는데 step3 뉴테이션 부분은 건너뛰고 1,2만 해도 상관없죠?...
-
국어 대학전공서적공부법으로1등급쟁취 영어 영강공부법으로1등급쟁취 수탐만 판다 ㅇㅇ
-
만화책도 책임? 2
그럼 나도 어릴때 책 많이 읽었지 그리스 로마 신화 칭기즈칸 삼국지 역사 와이책...
-
아니 그럼 n이 이미 붙은거 더 커져도 상관없으니까 대학만 올리면 되는거잖아? 오?
-
엘베 같이 탐 ㅎㅎㅎㅎㅎㅎ
-
연대 조발하라 7
조발하라 조발하라
-
다시 전과 알아보고 하니까 마음이 편해지네 동아리도 하고 축제도 가고 친구도 많이 사귈거임
-
이거 개천절부터 해도됨? ㅜㅠㅠㅠㅠ
-
20으로 알고 있는데
-
수1수2 수분감(수1끝) 미적 검더텅(적분하는중) 작년 설맞이 수1수2 미적 드릴1...
-
걍 좀 걸어서 국밥집 갈까요
-
다들 개인적인 질문(동기 등등....) 받으셨나요? 저는 못받았어가지고...
-
확통 찍먹해봤는데 ㄷㄷ이네
-
화1 3
이거 물1보다는 안고인거같은데 걍쉽게나와서아님? 원과목 최고권위자는 물1으루ㄱㄱ
-
대학 생활 아는 게 아무 것도 없어서 일단 가야하는데 어따 문의함뇨....
-
저 어릴땐 스마트폰 안썼어서 그냥 책만 계속 읽었음 한 9살정도쯤에 책 많이 읽으면...
-
맞팔9해요 7
저도 갈테가 달고싶어요...오네가이시마스
-
돈관리하는 방법 이런거요..
-
나 근데 독서 4
수행평가때문빼곤 3년간 1권도 안읽은듯 ㅅㅂ그래서 내가 2인가
-
왜 많다는 겨 이해불가 미적 말고 많은 게 없는데
-
고3이구여 정시 준비 하고 있습니다 제대로 시작한건 12월쯤 부터고 화작 미적...
-
요즘 꽃힌 노래 0
https://youtu.be/PsO6ZnUZI0g?si=UHWfok_banUHcAYa
-
괜찮을거야.. 아마..
-
ㅈㄱㄴ 뉴런 4월말쯤 끝내고 드릴이랑 N제 벅벅푸는게 베스트?
-
씹덕 동아리 들어갈거야
-
술약 후 혼코노 6
행복한 하루구나 으흐흐
-
확통 사탐으로 인서울 대부분 뚫린다는 거 방금 알게 됐는데, 현역이 학교 다니면서...
-
어떤분은 시종일관 지과목 좋으니까 지가하는 두과목 다하라고만 하네...
-
나뭐없는데 왜 팔로우하시는거지 그냥인가
-
아무래도 문과 학교니까 이과애들은 별 관심 없을 것 같은데…
-
강의 다 듣는다고 하면 양이 좀 많은거 같은데 나의 능력 부족인가
-
2주차 어싸 풀꺼임? 훑어보니까 ㅈㄴ 거르고 싶던데
-
올해 설맞이 2
설맞이 2026 언제쯤나옴?
-
완자로 내신대비가 되는 학교가 존재하긴 함?
-
언제부터 공부 시작하실건가요?
-
두명만 더 채워줘요.... 10의 배수여야 마음이 편해요
-
연애하려고 연합동아리 들어가면 됨 거기 들어가서 연애할라고 이것저것 시도해보다 보면...
-
생윤 강의에서 학교 다닐때 어떤 학생이 나이키 신발 훔쳐갔대요 ㄷㄷ
-
교뱃 드가자 7
반수도 드가자
-
현금은 좀 준비해놓긴 했는데 어케 되려나
-
청불영화 추천좀 4
고어말고 선정적인거 오늘 히든페이스 봤는데 너무 좋았음.
-
매년 1월은 너무 길다
06 ㄱㅁ
아닙니다 선배님
근데 러셀에서 모의수능 볼때 딱 저렇게 풀엇거든요
이게벌써 작수라니...앚그제풀었는데ㄷ
ㄷㄷ 선배님이다
이런풀이는 개발하시는건가요? ㄷㄷ
엄 개발?이용?
네ㅋㅋ 풀이 혼자 생각하신건가요
그럼요 위에서 말했듯이 모의수능셤장에서 저렇게 풀었슴다
앞으로 칼럼글 간간히 쓸텐데 잘봐주세요 ㅎㅎ
개고수 ㄱㅁ
엄밀하게는, 저 3^k*n->3^(k-1)*n->...패턴이 a7까지 계속 반복 중일 가능성과, 애초에 수열 an의 항 중에 3의 배수가 아예 존재하지 않을 가능성도 고려해야 되긴 해요
당시 저도 비슷하게 풀었어서
앗 그거때매 방금 게시글 올렸는데 정답 ㅠㅠ
역시 오르비는 최상위권 커뮤 인증
근데 저 순환에서 전 항 2개 더하는거때매 3배수가 없으려고 해도 3배수가 생긴다는 걸 포착하고 풀었어용
헉 미적 칼럼 잘봤어요!!!
사실 수시충ㅅㄲ입니다 ㅠㅠ
흐아아 힘들당...........
오르비에서 봤던 풀이긴 한데 06이 이걸 혼자 생각하셨다니... 06의 미래는 밝다
S대 ㄷㄷ
카포 연고 서성한 중경외시 서 입니다~
네?
응애 06은 뭔말인지 모르게떠요
꺆 의대 ㄷㄷ
어떡하지너무멋잇다 글씨가 진짜 천재 같애 님 최고
헉 대박 선배님 대박 제 글 보실줄이야 대-박
저거 현장에서 뭔가 8 32 넣으면 될거같아서 넣었더니 10초만에 답나와서 넘어감
리뷰 잘 보고있었는데 갑자기 댓글에 있어서 발 들어와봤더니대-박
이거 현장에서 어케 풀었지 기억도 안나네 ㄹㅇ
현장에서 10초만에 an을 3의 배수,그것도 3^k*q로 둘정도의 실력과 직관이 있다면 어느 시험지를 풀어도 고정 100일듯
an을 (3^k)*q로 놓는 생각이 어떻게 드신건가요? 뒤의 설명은 어렵지 않은데 도입만 모르겠네요..;
+ 오..빡통이라 그런지 뒤의 풀이도 모르겠네요 3q+q=4q가 나오는 거에서 3q는 3의 배순데 어케 더해질 수 있는건가요
그리고 3q+q=4q에서 우리는 an+1에 따라 an+2가 결정되니, 3q가 아니라 q의 영향을 받는 것이죠
ㅇㅎ 방향을 잘못 봤네요..
음... 일단 3으로 나누니까요?
그리고 첫째항이 아닌 n항을 주었으니까요
일단 근본적인 이유는 3으로 계속 나눌 수 있다는 것입니다
조금 희한하고 지엽적인 풀이인 것은 맞지만
요즘 수열문제가 다 정수론쪽으로 가다보니까 저렇게 생각했어요 약배수 관점에서
개지려따
모의수능
평촌러셀에서 보샸나요
아뇨? 왜요?
여기 댓글은 왜 씹실수밖에 없냐... 수준 겁나 높네
고대 ㄱㅁ?
수능장에서 저거 풀다 죽는 줄 알았어서...
ㅋㅋㅋㅋㅋ그럴거 같아요 69평보다 수열이 확어려워져서...
저는 k=!3의배수라 두고 k...3k,k,4k,5k,9k,3k,k....로 해서 풀었는데 저게 더 깔끔한 풀이 같네요