칼럼6) 탄젠트 이모저모
탄젠트 함수의 성질 두 가지를 소개해드릴까 합니다. 오늘 내용은 가볍고, 나름 알려진 편입니다.
일단 문제입니다.
(당연히 자작! 제가 드리는 문제에서 기출이라고 따로 언급이 없으면 다 자작일거에요)
원래는 f(x) 정의역을 좀 달아줘야 하는데(x=pi/2, 3pi/2 ...에서 정의 안 됨 이런거요) 예제문제니까 패스했습니다. 가볍게 보이는게 아무래도 더 중요하죠(?)
아무튼 문제를 풀어보겠습니다. 우선 이 상황이 왜 결정되는지를 느껴야 해요.
이 문제뿐만 아니라 다른 수학 문제를 풀 때에도 마찬가지에요. 어떤 요인으로 인해 상황이 결정되었고, 자신은 계산만 하면 답이 원하는 값을 찾을 수 있다는 걸 늘 느껴야 합니다.
그림을 그려보겠습니다.
점 A의 위치가 정해지면 점 B의 위치는 자동결정입니다. A 위치에서 5pi/2만큼 오른쪽으로 간 곳에서 함수에 점 찍어주면 그게 B에요.
한편 탄젠트 함수는 pi만큼의 주기를 가진 함수입니다. 그래서 아래 그림처럼 5pi/2 차이를 pi/2 + 2pi로 인식해볼 수 있어요.
pi/2만큼을 먼저 이동해주면 A가 위치한 것과 같은 날개(?)에서 B'이 찍힙니다. 그리고 그거와 위상이 같게끔 2pi만큼 이동해주면 세 번쨰 날개(??)에 B가 찍혀요.
위상이라던가 날개라는게 수학적 용어는 아닌데요, 직관적으로 전달하기에 이만한게 없더라구요. 앞으로도 종종 이렇게 표현하겠습니다.
여기서 B'과 A의 관계에 주목할 필요가 있습니다. 탄젠트 함수에서 x좌표 차이가 pi/2라는 것은 특별하기 때문이죠. 이유는 다음과 같습니다.
각이 pi/2 즉 90도 차이 난다면 두 직선의 기울기는 곱했을 때 -1이 나오는 관계일 것입니다. 함수에서 이를 보자면
점 B' 그리고 점 B의 y좌표가 k파이라고 하면 점 A의 y좌표는 -파이/k가 됩니다. 이 함수는 pi tanx기 때문에 그냥 k,-1/k가 아니라 거기에 파이까지 곱해진 겁니다.
그런데 아직 상황은 결정되지 않았어요. 영상을 보듯이 다음 과정이 연속적으로 보였으면 좋겠습니다. a가 -pi/4와 0 사이를 오갈 때 점 A 위치가 각각 결정되고, 그에 따라 B의 위치도 결정되는... 그 모든 상황이 아직 가능해요. 아직 a가 결정되지 않았으니 당연히 상황은 결정되지 않았습니다.
그래서 조건이 하나 더 주어져 있습니다. 점 A와 점 B를 이은 직선의 기울기가 1입니다. x좌표 차이가 5pi/2일 때
y좌표 차이도 5pi/2여야 합니다.
답은 2가 되겠네요. A의 x좌표가 -pi/4에서 0 사이에 있기 때문이죠.
한편 첫 번째 줄에서 두 번째 줄로 넘어갈 때, 정석은 양변에 k를 곱한 뒤 이차방정식을 푸는 것입니다. 근데 그렇게 하지 않고 바로 2 혹은 1/2이라고 찾을 수 있었으면 좋겠습니다.
일단 이차방정식 꼴이 될 것이니 k 값이 오직 2개라는 걸, 또 두 근이 역수관계에 있을 수밖에 없다는 걸 안 상태에서 (1, -1, 0이 아닌 어떤 수 a가 위 식을 만족한다면 1/a도 만족할 테니까요.) k=2를 넣으면 만족하니까 1/2도 만족하겠네생각하고 찾아내시는 겁니다.
숫자도 맨날 나오는 거만 나와서 그렇게 부담되지도 않습니다. 이미 이렇게 많이들 하고 계시기도 할거구요.
한 발짝 더 나아가서
이런거도 이제 바로 다음이 보이면 좋죠. 물론 중요한 내용은 아니고 그렇게 많이 나오는 계산도 아닙니다. 소소한 팁 드린거에요!
다시 본론으로 돌아가겠습니다. 삼각함수 문제는 주기와 대칭이 전부 아니냐고 말하신다면 .. 맞는 말이긴 합니다. 그런데 가끔 tan 문제에서 주기와 대칭 이외의 성질 두 가지를 묻기도 하더라구요. 지금까지는 그 성질 두 개 중 첫 번째를 소개드린겁니다.
tan 함수에서 x좌표 pi/2차이 -> 함숫값 정보 도출 가능
평가원에 나올 확률이 높냐고 묻는다면.. 전 낮다고 봅니다. 하지만 이 내용 자체로 좀 생각할 거리가 있고, 1년 내내 n제와 사설에서는 종종 보실 거기 때문에 소개드려봤습니다. 두 번째 성질도 마찬가지에요!
그 두번째 성질도 우선 문제로 소개해드리겠습니다.
(내리면 답 스포)
답은 4입니다. 풀이는 따로 없는데 방금 못 푸셨더라도 아래 내용 읽어보시면 스스로 푸실 수 있을거에요.
탄젠트 곱이 -1일 때 두 각 사이의 관계도 존재하지만, 탄젠트 곱이 1일 때에도 관계가 존재합니다.
곱이 1이라는 건 두 기울기가 역수관계에 있다는 것인데요,
역수 관계에 있다면 둘은 y=x에 대해 대칭적으로 그려집니다.
기울기 n, 그리고 1/n인 함수를 볼게요.
기울기가 n이라는 건 x좌표가 1 증가할 때 y좌표가 n 증가하는 것이고
기울기가 1/n이라는 건 y좌표가 1 증가할 때 x좌표가 n 증가하는 것이기에
둘이 y=x에 대해 완전히 대칭적인거죠.
즉, 두 각의 평균이 pi/4라는 겁니다.
(둘 다 동경을 예각으로 표현했다고 했을 때요.)
탄젠트 함수에 이를 나타내어보면
x축에 제가 pi/4, 그리고 등간격 표시를 해놨습니다. 어떤 의미인지 이해가 가실거라 생각합니다.
알려드린 두 성질을 tan 함수에 다 표시해보겠습니다.
tan 함수와 y=1/n 그리고 y=-1/n의 교점은 원점에 대하여 대칭일테니까 x좌표가 완전히 뒤집힌 것도 보입니다.
이 두 가지 성질 외에는 전부 주기와 대칭으로 끝날 겁니다. 평가원은 아마 주기 대칭으로 끝나게끔 문제를 낼 거 같지만 그럼에도 알려드린 이유는... 위에 말씀드린대로입니다 ㅎㅎ
준비한 내용은 여기까지입니다. 혹시 원하시는 주제 있다면 댓글로 언제든지 자유롭게 요청해주세요!
좋아요 부탁드리고, 팔로우해두시면 앞으로 나올 좋은 칼럼들을 놓치지 않고 확인하실 수 있습니다.
0 XDK (+1,000)
-
1,000
-
가슴이 웅장해진다
-
나름 괜찮은 지사의인가?
-
고능아에 존예
-
하
-
걍 계산을 뒤지게 못함요 계산 복잡하고 기출 아니고 문제27번 29번 쉬운...
-
꺆 0
꺄악♥
-
진짜 모름
-
작수 생1 2등급인 재수생입니다. 작년에는 백호t 커리를 탔습니다.라이브반...
-
일본 과자라는데 신기하네
-
평가원 건 뭘 물어보는지 명확하고 계산도 비교적 깔끔한데요, 이친구들은...
-
지스트정시 성적 1
혹시 지스트 가능할까요..?2025학년도
-
서울대점공 1
아직안했는데... 진학사에서 6칸이었어서 괜히 했다가 쫄리기 싫어서 안함...
-
가까이오지 마라
-
그야… 재밌으니까 언어이해<<순수재미goat
-
뭐 어떻게 검사한다는거임? 이것때문에 개인적인 얘기 안쓰는게 좋음?
-
대 범 준 0
“ 스 타 팅 블 록 ” 다섯 글자에환호성
-
미국 연예인들 출연료 보면 뜨악함뇨
-
왜 숫자가 다름? 팔로워분들 싹다 팔로잉 했는데도 팔로잉 숫자가 더 작은데 무슨 오류죠;;
-
오답률대로 평한번만 남겨주실수 있나요? Ex) 90% 눈풀이 70% 펜잡아야함...
-
다들 굿밤 9
코코낸내
-
수특 pdf 1
수특 pdf는 언제쯤 나오나요..??
-
예전 1박2일처럼 고생하고 돈받는것도 아니고 재미도 없고 자기들끼리 노는 모습만...
-
누가 진정한 최강 무적의 아이돌이라 생각함?루비는 아이를 뛰어넘었나?
-
나 산문은 현대소설 고전소설 수필 막론하고 눈길도 안줬는데 걍 연계기출이랑 사설만...
-
답은 정외사학 복전이닷
-
감사합니다
-
버벌진트의 후배가 되고싶다 이적의 후배가 되고싶다아악
-
올해 그 유씨삼대록 옥루몽 옥린몽 전부 다 강e분의 전체줄거리 5-6회독하고...
-
있으면 ㄹㅇ 지릴거같은데
-
팔로우해주실분 5
맞팔 안 받아요 팔로우해주세용 ㅠㅠ
-
모종의 이유로 헬기가 박살난 그림을 포함시킬까 말까 고민 중입니다. 여러분의 생각은 어떠신가요?
-
WLR @rollingloud K-FLIP
-
언제컴백해tv
-
님들이면 어디감? 이과분들만
-
서강대 경제분들 1학년 수업교재 영어로 되어있는거 있어요? 0
1학년부터 영어수업 해요?
-
통계 컴공 복전 6
-
이 라인 부터는 인강시간도 포함인거죠?
-
님들이면 어디감? 이과분들만
-
내가 선택과목 고르는 거긴 하지만 뭔가 단단히 잘못된
-
에듀셀파 노래 0
들을 수 있나요? 애플뮤직에 다운로드받아서 오프라인으로 듣는것도 불가능한가요? 여자캠퍼스입니다
-
.
-
라면보단 도시락이 나으려나....또이또이한가
-
ㅈㄱㄴ
-
만백 존나 떨어지는거 아님?ㅋㅋ
-
여기는 뭐가문제라 어제오늘 다섯명이 들어오는거임 정신아프다
-
수시 평가도 학교별 수준 감안해서 더 공정하게 할 수 있을텐데 왜 안하지
-
잘되셨으면 좋겠다
pi/2 차이이면 곱이 -1이다... 처음 알았네요!
좋은 정보 감사합니다!
수직인 두 직선의 기울기의 합이 -1이다를 처음 알지는 않았을텐데요..
정확히는 (n+1/2)pi를 쓰려고 했어요. tan값과 그 그래프와 연결지으려는 생각은 깊게 하지 못했었다는 뜻이에요. 수직인 두 직선의 기울기의 곱이 -1인건 물론 기본적으로 알아야 하는 사실이고요.
와우 님 뭐꼬