유명한 극한 조건
나름 알려진 극한 조건입니다. 아시는 거라면 복습차 빠르게 풀어보시고, 처음 보신다면 경험치 쌓기 위해 지금 풀어보세요!
(자작입니다)
극한도 확실히 할 얘기가 많은데, 칼럼 주제로 한 번 다뤄볼까말까 고민 중인 상태입니다.
팔로우해두시면 퀄리티 있고 유익한 자작문제와, 칼럼들을 놓치지 않고 다 확인하실 수 있습니다 ㅎㅅㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
궁금하네요
-
말안된다……
-
작년에 학원끝나고 걸어가고 있는데 길에서 사람보고 하수구에 뛰어드는 쥐봐서 충격먹었음
-
잠은 안 오네요
-
점공 업뎃완료 8
오늘 두명이나 들어왔네용 제발 최초합기원!!!
-
군필 03년생이고 이번에 휴학하고 공부하는데 수학개념을 많이 까먹어서 시발점부터...
-
롤케이크 맛있어 2
-
내일도 안좋으면 병원가야지..., 다들 굿밤되세요ㅜ
-
ㅅㅂ 팔만전자 되는 순간 다 팔아버린다
-
제2외국어 보는반이 분위기 좋다는 말도 있던데요
-
진심 트라우마 ㅜㅜ
-
개념강의가 가장 좋았고 판서좋아인간이라 더 잘 맞았나봐요 풀커리 탔고 수능날 아침에...
-
시ㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣ발 ㅠㅠㅠㅠㅠㅠ
-
근데 성적도 재밌어질거같아서 못하겠음
-
초딩인가 중딩때 인형뽑기 오락실 잠깐 유행하고 그뒤로 싹 사라졌는데 디시 우후죽순생김
-
군대 가면 생각보다 내 학벌이 나쁜 게 아니어서 놀랐네요. 1
지방 국립대 문과 출신이라 속된 말로 하위 10%일 줄 알았는데 군대에서는 이것도...
-
슬슬 합격발표일을 위한 마음의 준비나 해둬야겠군요 설날이 코앞인데 부디 어깨 펴고...
-
어우 기하가 재밌는데
-
고등수학 개념서 2
기본정석이랑 숨마쿰라우데 중에 어떤게 더 낫나요? 완전 노베고 처음 시작하는 거예요
-
잇올 대체공휴일 4
잇올 대체공휴일이나 임시공휴일에 자율등원인가요?
-
이대남들 다 그런거 아나요? 배운다면 어케 배우죠..?
-
이번에 듣보잡 샀는데 step3 뉴테이션 부분은 건너뛰고 1,2만 해도 상관없죠?...
-
국어 대학전공서적공부법으로1등급쟁취 영어 영강공부법으로1등급쟁취 수탐만 판다 ㅇㅇ
-
만화책도 책임? 2
그럼 나도 어릴때 책 많이 읽었지 그리스 로마 신화 칭기즈칸 삼국지 역사 와이책...
-
아니 그럼 n이 이미 붙은거 더 커져도 상관없으니까 대학만 올리면 되는거잖아? 오?
-
엘베 같이 탐 ㅎㅎㅎㅎㅎㅎ
-
연대 조발하라 7
조발하라 조발하라
-
다시 전과 알아보고 하니까 마음이 편해지네 동아리도 하고 축제도 가고 친구도 많이 사귈거임
-
이거 개천절부터 해도됨? ㅜㅠㅠㅠㅠ
-
20으로 알고 있는데
-
수1수2 수분감(수1끝) 미적 검더텅(적분하는중) 작년 설맞이 수1수2 미적 드릴1...
-
걍 좀 걸어서 국밥집 갈까요
-
다들 개인적인 질문(동기 등등....) 받으셨나요? 저는 못받았어가지고...
-
확통 찍먹해봤는데 ㄷㄷ이네
-
화1 3
이거 물1보다는 안고인거같은데 걍쉽게나와서아님? 원과목 최고권위자는 물1으루ㄱㄱ
-
대학 생활 아는 게 아무 것도 없어서 일단 가야하는데 어따 문의함뇨....
-
저 어릴땐 스마트폰 안썼어서 그냥 책만 계속 읽었음 한 9살정도쯤에 책 많이 읽으면...
-
맞팔9해요 7
저도 갈테가 달고싶어요...오네가이시마스
-
돈관리하는 방법 이런거요..
-
나 근데 독서 4
수행평가때문빼곤 3년간 1권도 안읽은듯 ㅅㅂ그래서 내가 2인가
-
왜 많다는 겨 이해불가 미적 말고 많은 게 없는데
-
고3이구여 정시 준비 하고 있습니다 제대로 시작한건 12월쯤 부터고 화작 미적...
-
요즘 꽃힌 노래 0
https://youtu.be/PsO6ZnUZI0g?si=UHWfok_banUHcAYa
-
괜찮을거야.. 아마..
-
ㅈㄱㄴ 뉴런 4월말쯤 끝내고 드릴이랑 N제 벅벅푸는게 베스트?
-
씹덕 동아리 들어갈거야
-
술약 후 혼코노 6
행복한 하루구나 으흐흐
수2를 모르니까 아쉽네 ㅋㅋ
헉 ㅠㅠ
36?
중복도?
중복도?? 가 뭘까요
(가) 조건이 f(x)의 특정 인수가 중복된 개수를 알려주는 식이라서 '중복도'라고 사람들이 불러요
헉 그렇군요 부르는 말이 있는지 처음 알았네요
나름 유명한 극한식은 (가) 조건을 말씀하시는 건가요, 아니면 (나) 조건을 말씀하시는 건가요?
둘 다였습니다.
(가)는 워낙 유명하고...
(나)처럼 절댓값을 처리해야 하는 상황도 빈출되는 상황이죠. 이 문제의 경우엔 바로 인수 두 개가 필요하다는 게 보이지만, 좀 상황을 꼬아서 숨겨두면 되게 어려워지는 부분이라서, 칼럼 주제로 쓴다면 자세히 써볼게요 ㅎㅎ
바로 테일러급수 ㅋㅋ
ㄷㄷ
(가) 조건을 보니 18학년도 6모 21번이 떠오르네요
로피탈써도 계산이 많다는 그 문제..ㄷㄷ
x-1의 제곱 플 x-2의 제곱 맞나요? a=0
36!!
절댓값 기준으로 +-상수가 나오는데 둘이 같아야하므로 a=0
과조건 맞죠?
아뇨! 저기까지 있어야 결정돼요. 왜 과조건이라고 느끼셨나요?
(가)조건에서 2라고 콕 찝어줄 필요는 없어보여서요
그렇지 않습니다. 만약 저 자리에 2가 아니라 1이 들어간다면, 함수는 결정되지 않습니다.
(가) 극한식이 존재한다는 조건만으로는 f(x)가 (x-2)를 인수로 몇 개 가지는지 알지 못합니다.
네 그래서 저라면 b로 두고 1은 안된다고 해도 되는거 아니냐는 뚯이었어요
그렇다면 문제가 과조건이라는 지적은 적절하지 않습니다. 저 문제는 상황을 결정하기 위한 최소한의 조건을 사용하고 있었기 때문이죠.
그렇게 주지 말고 다른 방식으로 줄 수도 있었겠다라고 하신다면
그건 적절한 말인듯 합니다!
허나 저 극한 조건 자체가 제가 만든게 아니라 평가원에서도 기출된 꽤나 유명한 조건이기에, 저는 그대로 사용했습니다.ㅎㅎ
이 게시글의 목적은 기출된 적이 있는 극한조건을 알려드리는 거였어요.
아무튼 의견 감사합니다!
네 제 단어선택이 부적절했네요
좋은 문제 감사드려요
혹시 저기 f(lxl)에서 절댓값을 안넣어도 답은 다르겠지만 문제 자체에 오류는 없는 건가요??
네 오류는 없습니다. 그 경우 답은 100이 되겠네요ㅕ
감사합니다!