[생1 오늘의 기출] 논란의 막전위(전도) 문제 <231115>
안녕하세요! 생명과학 1 과목을 가르치고 있는 하드워커입니다.
실제로 제가 문제를 어떻게 풀고, 어떻게 설명하는지 보여드리는 컨텐츠인 ‘오늘의 기출’ 5번째 문제입니다.
제가 보여드리는 풀이는 문제를 가장 빠르게 푸는 방법이 아닐 수도 있습니다.
하지만 논리적으로 비약 없이, 발상을 최소화해서 풀 수 있는 풀이를 보여드리려고 합니다.
그럼 시작해보겠습니다!
오늘 다룰 문제는 2023학년도 수능 15번 막전위 문제입니다.
제가 생1 문제를 어떻게 다루는지 잘 보여드릴 수 있는 문제입니다. 가능하면 많은 분들이 봐주셨으면 하는데, 컨텐츠 특성상 쉽지는 않을 것 같네요.ㅜㅜ 도움 주시면 감사하겠습니다...!
많은 생각이 들게 하는 문제입니다. 이 문제를 시험장에서 비약 없이 풀어내는 것은 거의 불가능합니다. P와 Q가 다르다는 조건도 없고, ⓐ~ⓒ가 서로 다르다는 조건도 없습니다. 이러한 상황에서 비약 없이 완벽하게 풀기 위해서는 모든 케이스를 일일이 다 시도해보는 것이 현실적입니다. 이러한 풀이는 제가 굳이 쓰지 않아도 여러분도 할 수 있는 풀이라고 생각해서, 따로 쓰지는 않겠습니다.
그래서 풀이를 두 가지로 나누어서 제시해보려고 합니다. 첫 번째는 P가 d2라고 가정하고 시작하는 풀이이고, 두 번째는 P와 Q, ⓐ~ⓒ가 서로 같지 않다고 생각하고 시작하는 풀이입니다.
1) P가 d2라고 가정하고 시작하는 풀이
많은 강사들, 학생들이 이렇게 풀이를 시작하는 것으로 알고 있습니다. 좋은 방법입니다. 그러나 ‘왜’ P를 d2로 가정하고 시작하는 것이 좋은지에 대한 합리적인 이유가 필요합니다.
그 이유는 문제에서 P가 d2임을 시사하는 정보가 3개나 있기 때문입니다.
① I과 II의 d2에서의 막전위가 서로 같은 것
② II에서 d2로부터 대칭인 d1과 d4에서의 막전위가 서로 같은 것
③ d2로부터 떨어진 거리가 I과 II의 속도비인 2:3과 같은 I의 d4와 II의 d5에서의 막전위가 서로 같은 것
이런 상황이기 때문에 P를 d2라고 가정하고 시작하는 풀이가 합리적이라고 말할 수 있습니다.
단순히 d2에서의 막전위가 ⓐ로 같다는 정보만 있는 등, P가 d2라는 것을 시사하는 정보가 하나밖에 없었다면 이러한 풀이를 비약이 심한 풀이라고 이야기했을 겁니다.
아마 저렇게 정보를 3개나 준 것은 평가원의 출제 의도 자체가 ‘P를 d2로 두고 시작해~’였기 때문일 겁니다.
다만 P를 d2라고 가정하는 순간 두 가지 생각을 추가로 하는 것이 좋습니다.
① 이미 한 번 가정했으므로, 여기서 한 번 더 가정을 하는 것(=이중 귀류)은 좋지 않다는 것
② 문제 풀이를 다 한 후 모순이 있는지 확인해보는 것이 좋다는 것 (모순이 없다면, 정답이 여러 개일 리는 없으니 바로 정답이라고 확정할 수 있습니다.)
물론 이는 공부를 할 때나, 시험장에서 어느 정도 여유가 있어서 답을 100% 확신하고 넘어가고 싶을 때 해야 하는 생각이고, 시험장에서 급박한 상황이라면 이중 귀류든 모순 확인이든 무시하고 풀이를 진행하는 게 나을 수도 있습니다. 단, 이 경우 문제를 틀릴 확률이 어느 정도 있다는 리스크는 짊어지고 가셔야 합니다.
P가 d2라고 했을 때 확실하게 알아낼 수 있는 정보는 ⓐ가 -70이라는 정보뿐입니다. 이제 Q가 무엇인지에 집중해봅시다.
급하다면, II와 III의 속도비가 1:2이고 ⓐ가 -70임을 고려해서 Q를 d4라고 가정(=이중 귀류)하고 문제를 풀면 됩니다.
Q가 d1이면 2cm 떨어진 d2가 1/3이므로 4cm 떨어진 d4(막전위 ⓐ인 지점)가 2/2가 되어 모순 (머리로 처리 가능)
d2는 막전위가 -80이므로 Q가 될 수 없음
Q가 d3이면 d3로부터 대칭인 d2와 d4의 막전위가 같아서 ⓐ가 -80이 되므로 모순(머리로 처리 가능)
Q가 d5이면 3cm 떨어진 d2가 1/3이므로 5cm 떨어진 d1(막전위 ⓒ인 지점)이 (5/3)/(7/3)이 되는데, 속도가 III의 절반인 II에서 2cm 떨어진 d1과 d4(막전위 ⓒ인 지점)는 (4/3)/(8/3)이 되므로 막전위가 같은 ⓒ일 수 없어서 모순 (숙련된 상태면 머리로 처리 가능, 아니라면 손으로 써보는 것이 현실적)
그래서 Q가 d4이고, 2cm 떨어진 d2가 1/3이므로 III의 속도인 6v가 2, 즉 v가 1/3이라고 구할 수 있습니다.
그리고 나서 모순이 있는지 확인해보면 없으므로, 정답으로 확정할 수 있습니다.
2) P와 Q, ⓐ~ⓒ가 서로 같지 않다고 생각하고 시작하는 풀이
평가원의 관습적인 표현을 믿고 가는 풀이입니다. (사실 개인적으로 P와 Q가 서로 다르다는 것은 관습적인 해석이지만, ⓐ~ⓒ가 서로 다르다는 것은 관습적인 해석이 아니라고 생각합니다. 다시 말해 P와 Q는 서로 다르다는 뜻을 내포하고 있다고 생각하는데, ⓐ~ⓒ끼리는 서로 같을 수도 있다고 생각한다는 이야기입니다.) 이 경우 논리적인 풀이가 어느 정도 가능해집니다.
일단 ⓑ와 ⓒ는 서로 다르므로 P는 d4가 될 수 없습니다. 또한 P가 d3라면 d3로부터 대칭인 d2와 d4의 막전위 ⓐ~ⓒ가 모두 같아야 하므로 P는 d3가 될 수 없습니다. 이 다음부터 머리를 조금 써야 합니다.
P가 d5라면, 일단 P와 Q가 다르니까 Q는 d5가 될 수 없고, 막전위가 -80인 d2도 Q가 될 수 없습니다. 또한 ⓑ가 -70이 되므로, III에서 막전위가 ⓒ인 d1, 막전위가 ⓐ인 d4는 Q가 될 수 없습니다.
Q가 d3가 되면 d3로부터 대칭인 d2와 d4의 막전위가 같아져서 ⓐ가 -80이 되는데, 자극점이 d5로 같고 속도비가 2:3인 I과 II의 d2에서 동시에 막전위가 -80이 될 수는 없겠죠? 따라서 P는 d5가 아닙니다.
P가 d1일 때도 비슷합니다. 이때는 P와 Q가 다르니까 Q는 d1이 될 수 없고, 막전위가 -80인 d2도 Q가 될 수 없고, ⓒ가 -70이 되므로 III에서 막전위가 ⓐ인 d4도 Q가 될 수 없습니다.
Q가 d5이면 3cm 떨어진 d2가 1/3임을 고려할 때 1cm 떨어진 d4가 (1/3)/(11/3), 즉 ⓐ가 -70이 되어버려서 P는 d5가 될 수 없습니다.
마지막으로 Q가 d3가 되면 d3로부터 대칭인 d2와 d4의 막전위가 같아져서 ⓐ가 -80이 되는데, 자극점이 d1으로 같고 속도비가 2:3인 I과 II의 d2에서 동시에 막전위가 -80이 될 수는 없습니다. 시냅스를 고려하더라도, I이 II보다 확실히 느리니까요. 그래서 P는 d1이 될 수 없습니다.
따라서 P는 d2가 될 수밖에 없습니다. 위의 과정은 충분히 머리로 처리할 수 있는 과정입니다. 저는 이처럼 머리로 처리할 수 있는 귀류성의 풀이 전개 과정을 귀류성 논리라고 부르고, 논리적인 풀이의 일종으로 취급합니다. 귀류성 논리에 대해서는 나중에 글로 다시 한 번 소개해볼게요.
P가 d2이면 ⓐ가 -70이 됩니다. Q는 막전위가 ⓒ인 d1, 막전위가 -80인 d2가 될 수 없고, Q가 d3라면 대칭에 의해 ⓐ가 -80이 되어버려서 모순입니다. 그래서 Q는 d4와 d5 중 하나인데, 급하신 분들은 여기서 Q를 d4라고 가정하시면 되고, 끝까지 비약 없이 풀고 싶으신 분들은 1번 풀이의 마지막 과정에서 설명한 풀이를 하시면 됩니다. 복붙해놓을게요.
“Q가 d5이면 3cm 떨어진 d2가 1/3이므로 5cm 떨어진 d1(막전위 ⓒ인 지점)이 (5/3)/(7/3)이 되는데, 속도가 III의 절반인 II에서 2cm 떨어진 d1과 d4(막전위 ⓒ인 지점)는 (4/3)/(8/3)이 되므로 막전위가 같은 ⓒ일 수 없어서 모순 (숙련된 상태면 머리로 처리 가능, 아니라면 손으로 써보는 것이 현실적)
그래서 Q가 d4이고, 2cm 떨어진 d2가 1/3이므로 III의 속도인 6v가 2, 즉 v가 1/3이라고 구할 수 있습니다.”
두 가지 풀이를 소개하다보니 글이 길어졌네요. 나름 이 문제에 대해서 많이, 오래 고민해본 결과 이 두 풀이를 소개하는 것이 합리적이라는 결론을 내렸습니다.
도움이 되셨다면 좋아요 한 번씩 부탁드립니다.
이상입니다. 감사합니다!
오늘의 기출 시리즈:
https://orbi.kr/00061411686 (세포분열)
https://orbi.kr/00061578976 (여러 가지 유전)
https://orbi.kr/00061910041 (가계도)
https://orbi.kr/00062400351 (돌연변이)
* 과외 관심 있으신 분들은 아래 링크 참조해주세요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
1. 인도는 종교에 따라 다른 민법체계가 작동한다 2. 인도에서는 상류층일수록...
-
원점수는 47이었다
-
예비고3이고 내신은 3.0이고 모의고사는 백분위 94뜨는데 정시힐까요? (31211)
-
그 세계는 유토피아가 될까요 디스토피아가 될까요?
-
현역 정시파이턴데 확통 기하 둘중에 정하질 못하겠어요.. 확통은 경우의 수도 너무...
-
이과들도 사탐런을 많이 하는 추세고 표본은 당연히 고여갈텐데 당연히 평가원은 변별을...
-
올해 물1생2응시했고 설공 걸고 반수 할건데 물1 뭘로 바꿀까요
-
나이를 먹을수록 세상이 아름답지 않은것같음..
-
실채 뜨면 할랬는데 너무 심심함 남들 점수라도 구경해야겠음 혹시 작년 합격표본 점수...
-
3페이지 이내로 줄이기.
-
걍 당일 집 와서 바로 복기하긴했는데 까보니까 존나 다른거...
-
수1 기억이 희미하고 수2는 고3기출 3,4점 잘 맞춥니다 복습 차원으로 이미지T...
-
인생망한건가요 2
08 현고1 예비고2임 똥반고 재학중. 1학기 내신은 거의모든과목 2등급 턱걸이로...
-
ㅋㅋ포기해야겠다
-
실력 2~3등급대인데 이창무 심특할까 하는데 괜찮을까요? 2등급 이하면 기출...
-
이미 1년 다녔으니 길어봤자 3년 내에 졸업이고 졸업하면 어차피 남자들이랑 같은...
-
시대인재 김성호 선생님 미적 어떤가요?
-
로무 1
?
-
겨울방학 커리(미완) 14
국어: 이원준 코어코드, 문학은 미정, 매월승리 + 수능특강 미적: 강기원 공통:...
-
메랜 혐사많네 0
완마 75가 디폴트인데 60에사겠다는새끼는뭔 ㅋㅋㅋㅋ
-
12월 둘째주부터 승리t 인강 오리진 부터 보려고 하는데 2026 오리진 업데이트...
-
쏴랑한다 연세이 0
쏴랑한다 당원
-
제 여보신가여ㅠㅜ? 여보구합니다ㅠㅠ
-
국어3수학3 수능때 떳는데 재수땐 사탐할려고요 3월부터 쌍윤시작해도 안늦겟죠?...
-
오전 국어 이후 수학 저녁 먹고나서 탐구 이렇게 작년처럼 할 듯 싶은데 피드백이나 조언좀요
-
그럼 그시간에 공통을 풀던가 뭐 어쩌라는 거임 지가 미적표본 다 깎아먹어놓고는
-
수학 기출 1
이번에 고3 올라가는 현역인데 미적은 기출 2회독 정도 했는데 공통은 거의...
-
필수: 수능특강 문학, 수능완성 권장: 수능특강 언어와 매체 선택: 수능특강 독서,...
-
보내주나?
-
내공자들의 계획이 듣고 싶어요
-
정시에서 영어가 어느정도 영향을 주나요?
-
두개ㅜ병행 할까요? 아니면 인강만 할끼요? 고1 정파임 수학 3~4등급입니다
-
안할거니까 안하면 하루에 10000덕씩 뿌림(12일까지) [평일 4시간, 주말...
-
06일까 07일까
-
지2 경험자 컴온 10
단도직입적인 질문, 할 만함? 메쟈의를 노릴 바엔 2과목 하나 껴서 설의 노리는 게...
-
질문받습니다 16
암거나 ㄱㄱ
-
팩트는 가형 나형 유불리와 사탐 과탐 유불리보단 덜하다는 거임..
-
질문 받음 1
히히
-
고2인가봐...귀여워
-
안녕하세요. 학습자료 탭에 처음으로 글을 써보려니 뭔가 두렵네요... 아는 동생이...
-
왜 비오냐 2
아 눈오라고~~~!~!~!~!~!
-
무슨펌하지 3
좀 머리 피고싶은데
-
확통사탐이라 이과친구들에 비해서 시간이 남는 편이랑 수학 공통에 많이 투자할...
-
평소랑 똑같이 행동하면 되겠죠?? 막 다르게 행동하면 부담되겠져??
-
학교에서 억울하게 왕따를 당하다가 결국 자퇴하고 공부하려는 학생인데 그냥 부모님도...
-
오지훈 지구 1
oz매직 개념 2025껄로 강의 들어도 괜찬을까요
-
“가성비 과외”라고 하는 것 강사가 본인 실력/경력 딸리니까 가성비로 커버치면...