자연 상수 e의 정의 (ft. 3점짜리 자작 문항)
고등학교 경제수학을 공부하거나 경제를 공부하거나 미적분을 공부하다 보면 'e'라는 수에 대해 공부하게 됩니다.
이는 원주율과 함께 우리가 고등학교에서 마주할 수 있는 대표적인 무리수 중 하나입니다.
참고로 원주율은 3.14159265358979323846264338327950288419716939937510582097494450230781640628620899862803482534211706798214808651328230664709...의 값을 지닙니다. 뇌 훈련 목적으로 심심할 때 쭉 외워보시면 좋겠습니다. (지금 적은 수까지는 제가 외운 것입니다 ㅎㅎ)
우선 모르는 지식을 접할 때는 네이버나 구글, chatGPT 등을 통해 읽어보면 좋습니다. 얘네는 '이걸 처음 보는 사람의 입장'에서 설명해준다는 느낌을 받았기 때문입니다. 아래 '자연 상수 e' 클릭하시면 네이버 검색결과로 이동합니다.
자 그럼 대충 요약해보면 e는 다음과 같이 정의한다고 합니다.
우리가 알 수 있는 것은 e는 어떤 식의 극한으로 정의하는데 그 극한은 밑이 1로 가고 지수가 무한대로 발산하는 극한이라는 것입니다. 다시 말해 이런 느낌이라는 거죠!
그렇다면 아래 극한처럼 밑이 1로 가고 지수가 무한대로 발산하는 극한을 보면 우리는 'e와 관련이 있나?'라는 생각을 해볼 수 있습니다. 참고로 아래는 미적분에서 e의 정의를 처음 공부하면 쉽게 확인할 수 있는 문항 중 하나입니다.
그럼 이것을 e의 정의를 활용해 해결해봅시다.
참고로 함수의 극한의 성질 중 아래는 우리가 수학2나 미적분에서 배우진 않지만, 대충 '각각이 연속이면 이렇게 할 수 있다'라고 이해하시면 됩니다.
다시 말해 함수 f(x)가 x=g(a)에서 연속이고 g(x)가 x=a에서 극한이 존재하면 성립한다는 뜻입니다. 증명은 아래로 하면 되겠죠!
이러한 상황일 때
이런 느낌이니
이것과 같아 성립한다.. 뭐 대충 이렇게요
자 그럼 이제 제 자작 문항입니다. (옛날에 만들었던 것인데 처음 오르비에 공유했던 글은 아래를 참고하시면 좋겠습니다.)
대신 풀 거면 글 들어가지 말고 직접 먼저 풀어보시기!
[미적 자작 문제] 무리수 e의 정의
풀이 과정은 따로 남겨두지 않겠습니다. 푸신 후에는 위에 글 '무리수 e의 정의' 들어가셔서 답 확인해보시면 좋겠습니다!
아 참고로 저 sinh(x)는 'hyperbolic sine function' 정도로 읽으며 쌍곡선 함수의 한 종류입니다. 아래와 같습니다.
말 나온 김에 쌍곡선 함수와 관련한 것들을 남겨두겠습니다. 지수함수 적절히 조작한 느낌인데 sin이 나와서 '삼각함수?' 하신 분들이 계실 거예요. 이는 실제로 삼각함수에서 논할 수 있는 것들 (삼각함수 간의 관계, 삼각함수의 덧셈정리 등) 과 쌍곡선함수의 형태가 연관이 있기 때문에 저렇게 명명했다고 알고 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모의면접 이거는 안해도되는거 맞나요?? 실제면접만 응시하면 되는거죠? 모집요강...
-
평가원 #~#
-
ㄱㄱ
-
하나도 모름..
-
尹대통령, 관저 나서며 "국민들과 함께 끝까지 싸울 것" 13
[파이낸셜뉴스] 윤석열 대통령이 15일 한남동 관저에서 이동하기 전 "국민들과 함께...
-
정치 공부는 뭘로 해야함..? 국회의원도 잘 모르고 암튼 여러모로 잘 모르는데
-
정치성향 중요하게 보려나
-
둘 중 어디 선택하나요? 이런 경우 지거국 선택하는게 좋지 않요까요? 수만휘에...
-
자전거사고싶다 4
ㅠㅠㅠㅜ
-
스크류형 만듦샤 개 ㅅㅂ이네 또 고장남 뻐커 이 ㅅㅂ것들
-
미분이 진짜 꼴리는데 41
나의 천박한 손놀림으로 함수를 미분하는거지... 한꺼풀 한꺼풀씩 벗기다보면 그녀의...
-
중대 1시 조발 1
안 하나
-
빅펌들어할때
-
아니면 일반전형으로 생기는거임?
-
옯스타이지만 이제 공부얘기만 올라오는 올브타에 대해서… 매일매일 수능전까지 하루도...
-
님들아 어제 올린 글이 단순 자랑글이 절대 아니라는 거 4
특히 공대 지망하는 수험생분들이나 공대 신입생들 위해서 미리 붙여두는 정보임 공대는...
-
한동훈은 3
그냥 민주당으로가라..
-
쪽지 주세요
-
캬 드디어 정신차렸구나
-
mbc보고 1
채널에이도 보는게 좋은듯
-
엄청 세세한 분석은 오버
-
엄마<——최고의 요리사 그냥 goat.
-
설사범 면접 3
잘 보면 가산점 얼마만큼 주나요? 성적은 안정권인데 궁금해서요
-
SBS가 가장 중립이라 생각함 그 (민주당 북한 차이나)방송국이랑 JTBC가...
-
안녕하세요 연고대 희망하는 예비 고3입니다 z점수 알고 싶은데 아무리 찾아봐도 잘...
-
사정비율 4
이거 너무 이상해요 단어바꾸면안됨??
-
콜드브루 맛있당 21
맛있어
-
왜 말이 서로 달라 현시점에서 아직 정확하게는 모르는건가요
-
이재명 관련주 2
인데 완전 거품은 아닌거 매수완
-
윗표본인데 왜 연경을쓰지 저걸로..?
-
그룹 아이브 멤버 장원영에 대한 가짜뉴스 유포 혐의로 사이버 렉커 유튜버 탈덕수용소...
-
만19세 이상 8
중에 중앙대 모르는 사람 얼마나될까? 재명이가 인지도 ㅈㄴ끌어올릴거 같긴한데
-
지문 분석하고 어느 부분에서 문제화 됐는지만 체크하고 넘어갑니다 문학처럼 세세하게...
-
이런거 사두는거 좋아해서 있는데 박근혜는 말아먹었고.. 문재인꺼는 가격오를까
-
존나게 낑낑대면서 풀었는데 일어나보니 내용이 기억이 안나네... 아까워라
-
대통령 체포됫구나 16
이거 탄핵되고 이재명 대통령될 삘인데 아 빨리 국장 처분하고 집사야하는데 아파트...
-
닥공은 1
언제나 진리..
-
서울대 1차합격자 점공 거의다 들어왔다던데, 펑크날 것같은 학과가 있나요? 6
설대 1차 합격자의 점공이 거의다 들어온 상태라 펑크날지 여부도 지금쯤이면 윤곽이...
-
강의 중간에 끊기고 잠적해야됨?
-
박광일 기출분석 방법 영상 업로드됨 ㄱㄱ링 홀수 드가자~~~~
-
가능한가요? 뒷통수 심한가요
-
전 정치를 잘 몰라서 딱히 지지하는 사람이 없는디..
-
슬슬 헤어밴드로도 커버가 안 되는군
-
중대발표 9
2시였던가 조발 가능성 없음?
-
진짜네
-
국민의힘 틀딱들이 윤석열 지휘아래 지랄한거임 보수에 이준석말고 자유주의적인 성향...
-
어디까지준거지
-
시시시호의 기하과외 28
전공수업에 나오는거다
일단 추천꾹
e 말씀하시는 건가요? 아님 쌍곡선 함수? ㅋㅋㅋ
e요! 지금 경제수학 배우는중이라서 ㅋㅋㅋㅋ
오 경제학과시구나 ㅋㅋㅋㅋ 반갑습니다! 가까운 지인 가족 분들 중 한 분도 외대 경제학과 나오신 것으로 알고 있어 더 반갑네요
저런 문제 옛 기출인지 오르비인지에서 본 것 같아요!
미적 개념 처음 배울 때 재밌어했던 식 정리 중 하나네요
삼각함수 극한 처리할 때처럼 얘도 급수 다 박아버리면 lim 분배하기 쉽긴 하겠네요 ㅋㅋㅋㅋ 옛 기출에도 있었다면 완전 재밌겠네요!! 개인적으로 수능이나 적어도 평가원 모의고사 25번 쯤에 한 번 나와도 재밌을 것 같다는 생각을 항상 해요
혹시나 제가 교사나 교수 되어 수능 출제하러 들어가면 제가 출제해야겠네요 ㅎㅎ