미적분 28번의 본질과 변형 문항 12제
28번aaa.pdf
* 수정수정한 문항입니다.
안녕하세요. 한성은입니다.
숟가락을 얹으러 왔습니다.
양 변에 1을 더하는 것도, 루트 씌워 f(x)를 구하는 것도, 대칭성을 이용하는 것도 28번의 본질이 아닙니다. 28번의 본질은 s축입니다. (농담) 첨부 파일 2번 문항만 다뤄봐도 f(x)를 구하는 풀이의 한계점이 보일꺼예요. 제가 설명한 영상 첨부합니다. 참고하세용.
변형 문항은 6번까지는 수학2 문항, 7번부터는 미적분 문항입니다. 모의고사에 수록할 정도로 가다듬지는 않았지만 연습용으로는 충분할 것 같습니다. 오류가 나오기 좋은 소재라 뭔가 실수가 있었을 법 하니, 문제도 의심하세요.
감사합니다. 행복하세요.
* 오류가 하나 발견되어 수정하였습니다. 10번에 조건 g(0)=0을 추가합니다.
* 두 번째 오류가 발견되어 수정합니다. 11번에 우변 함수를 수정합니다.
난이도 준답시고 우변을 이상하게 박았더니 대칭이 아닌게 되어 있었네요..
* 세 번째 오류가 발견되어 수정합니다. 11번에 조건 0<g(0)을 추가합니다.
f(x)가 x=1에서 극솟값을 갖는 경우를 놓쳤습니다. 이 경우를 풀면 답으로 2가 나옵니다.
0 XDK (+11,000)
-
10,000
-
1,000
-
나도 써줫으니 그대들도 써주시오
-
우우여부이 대학골라줘. 33
경북대 전자공학부 vs 과기대 전자공 vs 아주대 전자공
-
0칸은 ㄹㅇㅋㅋ 3
뭐냐 근데 본인 진지하게 생각중이긴함 심지어 붙고싶어
-
오노추 3
너무 조와요
-
스나 2
6 7등급 지방대 스나 가능?
-
라인전에서 솔킬 따이면 전체 차단하면됨
-
지디가 먼저 뜨는구나.. 카더가든 노래도 좋아요 들어보셈!!
-
오르비언의 평가 부탁드립니다
-
비문학 1지문 정도 못 풉니다.. 문학 30분 화작 18분 정도 걸려요.......
-
이미지 써봐 12
ㅇㅇ
-
과외쌤 좋아하는데 14
여친 있으셔서……..
-
네네
-
닉언 해도 되는지 몰라서 일단 언급하지 않고 글 씁니다.. 제가 물2 속도벡터...
-
전통놀이 on 5
설 밑 학교는? 고>연 vs 연>고
-
이미지 구다사이 55
-
잘생긴애?아님 착하고 서글서글하고 같이 대화하면 재밌고 편한애ㅇㅇ 생각보다 외모가...
-
ㅇㅇ
-
기억이나 하냐,,,
-
우리 팀 원딜이 헬퍼던데 일단 게임 이기긴함
-
나형으로 이공계 진학 허용 가형 3등급 이하 표본 대거 이탈 가형 1컷 96됨
-
못생김의 한계가 없는게 서글퍼지는 날이에요
-
이미지써주세여 6
-
이것도 부족하다고 이걸 매일매일 하는 거에 모자라서 이 이상을 하는 게...
-
이미지 써주세요 8
이 미 지 써 주 세 요 .
-
사실 은테 되는 날도 호달달 떨었음. ..
-
마음을 6
불태워라 화끈한 사람이 되겟어요
-
처음은 아무랑 안하고 핵존예랑 ㄹㅈㄷ몸매랑 할거임
-
저가 뽑을 대통령임 12
봇치를 청와대로!!
-
현역때도,재수때도 열심히살았었는데...
-
입결 숭>인 인식 인>숭 맞나요? 어디 가는 게 낫나요 집은 숭실이 훨씬 가까움
-
오늘 밤새거나 11
아침 6시나 7시에 취침 예정
-
ㅇㅇ
-
없을거라 믿습니다
-
밥 먹고싶음
-
이미지 써조 10
ㄱㄱㄱㄱ
-
생각해 보면 주변에 과외 들었단 친구들 중에 남선생님랑 했다는 소린 못 들어봐서요...
-
솔직히 남자는 6
머리랑 옷만 멀끔해도 평타는 침...훈훈한 외모아니여도 착하고 서글서글하면 인기많음
-
일단 색깔 형광펜 , 담요 , 필기구 준비 완료했고 생윤 사문 정했습니다. 현강에서...
-
성대 문사철 가서 상경복전 vs 냥대 문사철 가서 상경복전or전과 8
학벌욕심은 큰데 상경가려면 급간이 낮아져서 복전이나 전과하고싶어요 성대는 쓴다면...
-
열심히하는데 얼굴이 어느정도 되야 호감 생기는듯
-
1. 대학교도 돈이 많아야 한다. 2. 온라인 카더라와 현실 팩트 간극이 커서 놀람...
-
작년에 민철T 커리 다 탔습니다
-
이미지적어줘요 20
나쁜말은 ㄴㄴ
-
꼬시는거까진 모르겠고 호감 사는 건 확실함 갓생사셈 자기 인생 열심히 살고 자기 일...
-
이걸 차단 풀고 쓸까 말까
-
진실을 부정하고 싶은단계라 의심되는쪽이 맞더라 보통은
-
사탐 99 97인데 변표 뜨고 막 밀리진 않겠죠... 하아 고속에서 연초떠서 너무 불안하네
11번 문제에서 극댓값과 극솟값이 각각 6.2 인거를 어떻게 바로 알아내나요??
우변 함수가 코사인이 최대일 때 최소, 최소일 때 최대입니다.
그러면 좌변은 연속함수인데 최대 최소를 가져야하니까 증감이 바뀌는 곳이 필요함을 알겠습니다!. 근데 g가 정해지지 않은 상태에서 바로 f가 극대 또는 극소인 곳에서만 최대 최소가 결정되어야한다는 보장이 있나요?
예를 들어 f'(g(x))가 0이 되는 곳이 없어도 충분히 최대 최소를 만들 수 있지 않는가라는 것 입니다.. 궁금합니다ㅠㅠ
그 부분이 이번 28번과 마찬가지인데, 아래의 g값의 대소 때문에 '건너가야' 하기 때문입니다. 강의 보시고 문항들을 앞에서부터 풀어보면 이해 되실꺼예요.
네 g의 연속성을 위해서는 f가 극점이 되는 x값을 건너야한다는 논리를 써야만 되는거 맞는거죠!...최대 최소만으로는 필요충분이 아니라서 여쭤봤습니다
그런데 혹시 g(3)과 g(1) 값이 모두 3이 될 수는 없는건가요? 꼭 하나의 경우로 확정 되어야하는 상황인건가요ㅡ
g(0)<g(4) 때문에 극댓값을 왼쪽에서 오른쪽으로 건너가야 합니다.
g(3)과 g(1)이 같다고해서 못 넘어가는거는 아니지 않나요??
g에 대한 증감 조건이 구간별로 주어지지 않는 이상 바로 g값을 확정하기는 힘들어보입니다만..
g(2)가 f(x)의 극대점의 x값이 되어야 하고 g(0)~g(2)는 왼쪽, g(2)~g(4)는 오른쪽에 있어야 합니다.
넵 이제 완벽히 이해했습니다. 좋은 문제 감사합니다
11번 x=3일때 f(g(x))값이 3인데 이러면 g(3)=3이 될 수 없지 않나요?
헉.. 맞습니다. 이런.. 제가 잘못 생각했네요 ㅜㅜ
덕분에 오류를 알고 수정했습니다. 감사합니다.
f의 극솟값 x좌표가 4가 아니라 1일 수도 있지 않나요?
아 수정됐었네요
죄송 & 감사
좋은 문제 감사합니다. 28번 처음 해설 듣고 멘붕왔는데 문제 풀고 적용하면서 감잡을 수 있었어요.
고3학생입니다 덕분에 감이 좀 잡히는 거 같은데..
결정된 겉함수 치역의 범위에 따른 속함수의 범위/연속으로 인해 발생할 수 밖에 없는 극대,극소 해석이 속함수가 명시적이지 않은 상황에서 결과를 보고 역추론하게끔 평가원에서 기존의 추론방향을 바꾼 것 뿐인거라고 생각드는데 제가 잘 이해한 것이 맞을까요?
대충 맞는 것 같아요.
선생님 1번 해설 틀린거 아닌가요
g(x) 계수가 양수 아닌가요?
네. 헷갈렸습니다 ㅜㅜ 감사합니다.
썜 12번 g(x) 미분가능 조건 없어도 되나요?
f가 (2,1) 점대칭이고 우변이 (3,1) 점대칭이니까 g가 (3,2) 점대칭+연속이니 미분가능. 이렇게 다시 풀어봤는데 맞을까요?
미분가능 조건은 필요하지 않습니다. 대칭성으로 푸는 것이.. 결과적으로 맞긴 한데 논리를 채우기 힘들어 보이네요. g가 점대칭이 어떻게 나오나요? s축 ;; 경로 선택으로 풀어보세요.
쌤 다시 풀어봤어요. 11번 풀고나니 12번은 바로 풀리는거 같아요
11번에서 경로 선택이라는게 부등식 조건에서 g(0), g(4), g(6), g(10)은 확정되고,
g(x)를 완성할 때 g(1)에서 g(4)까지는 x의 양의 방향으로 쭉 가다가 g(5)에서 계속 쭉 가면 g(6) 값이 2가 되지 않으므로 f의 극대까지 되돌아갔다가 다시 쭉 가면 g(10)까지 이어지게 되니까 값이 해설이랑 같게 나오는데 이렇게 푸는게 맞나요?
훌륭합니다.
좋은 문제 만들어주셔서 감사해요 ❤️
1번 문제에서 실수 전체에서 f가 연속인데 해설에 있는 g에 -2값을 넣은 값을 만족시키는 h의 정의역 값을 f가 못가지는거 같은데 흠.. 제가 뭔가 잘못이해한걸까요?
1번 해설에 '최고차항의 계수가 음수이다.'를 '최고차항의 계수가 양수이다.'로 바꾸면 나머지는 문제가 없습니당.
선생님, 안녕하세요. 저 질문이 있어요. 써밋n제에 짧은 글로 한두쪽 실린 것처럼 <한성은의 수학공부법> 칼럼을 더보고 싶으면 어떻게 해야 하나요? 이거 책이나 블로그 포스팅은 없는지 궁금해요.
엄청나게 늦게 봤군요. https://blog.naver.com/sungeun_82 에 틈틈이 올릴 예정입니다.
선생님 늦게라도 답변주셔서 정말 감사합니다! 블로그에 사진 넘 멋지십니다 ㅎㅎ