[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
들리는 말로는 제가 호머식 50으로 칼럼 쓰다 탈퇴한분 사문 가볍게...
-
https://orbi.kr/00069878130/%EA%B5%AD%EC%96%B4%...
-
뭐가 더 도파민 폭발임? 수능날 60분컷 적백받고 40분 잠으로 능욕 vs 쓰리썸
-
ㅇㅇ?
-
한의대 선택과목 0
오로지 한의대만을 생각하고있습니다.. 일단 탐구는 무조권 사탐을 할것인데 수학은...
-
진짜 이거까지만 먹고 다이어트하는거어떰
-
논술 입실까지 7시간남았다
-
놓쳐서 아쉽네료
-
무조건 정상화 시킬거 같은데 메디컬학과들이 사탐을 반길리 없음
-
수지맞는 장사잖소
-
지1 등급컷 2
지구1컷 41 2컷 36 가능세계는 없을까요 5광탈입니다. 정말 너무 힘드네요....
-
운동신경 ㅈ도 없어서 팔굽혀펴기랑 턱걸이밖에 할 줄 아는 거 밖에 없는데 구기...
-
투표좀요 0
어떨지 궁금하네여
-
들어올때 키오스크로 보고 59번자리 누가 선택안했길래 59번자리 내가...
-
용돈 땡겨받게 생겼네 아..
-
작수 미적 81점 백분위 93 올해 확통 81점 백분위 85
-
언매미적 과탐(1+2) 국수 99 영어1 과탐 백분위 92
-
할,멈도 이젠안.되는데,어떡해할까,요?
-
내 첫경험 10
수학만점첫경험 사설,교육청,평가원통틀어서 내년수능도만점도전한다
-
11월말부터 12월초까지는 수학만 12월중부터 12월말까지는 영어/국어만 해보려하는데 어떨까요?
-
Ainsi bas la vida, Ainsi bas la vida 0
Ainsi bas la vida ainsi bas la vida
-
수학 19번 분명히 41 한 기억이 있는데 가채점표에는 31로 되어있음
-
제가 보기에 좀 꼴사나운 사람들은 오래 못가더라고요.. 부계정 50개 들고가서 고로시했거든요
-
ㅎㅎ
-
그것도 모르고 수2에서 어왜진동안나오지 이랬네..
-
옥린몽 옥루몽 등등이 비연계로 돌아다니겠구나..
-
그 누구도 그 원칙에서 벗어날 수 없고 따라서 언젠가는 너 또한 피비린내를 풍기게 될 것이다.
-
그러면 마음이 차분해짐 ㅇㅇ..
-
자기가 예를들면 96점이다 이렇게 입을 털고 실제로 그 점수를 맞아서 성적표를...
-
첫경험 썰 4
들어주셔서 감사합니다.
-
막 심장마비거나 그런건가 하고 온갖 생각 들었는데 다행히 그냥 술 취해서...
-
잘 이해가 안감 상대방과 합의 하에 쓴 게 아니라면 되게 상처받을지도 모른다고 생각
-
내일이면 제가 오르비를 가입한지 1년이 되는 날이네요. 4
응애 나 만0세 애기!!!!!!!
-
문이과 상관없어요
-
하..
-
비문학 문학 둘 다 상관없
-
오늘 화학수행평가봤는데 조를 짜서 실험하고 관련된보고서작성하는거였음 보고서는...
-
연애도 관심없고 사진도 Sns도 인맥도 돈도 추억도 시간도 전부 필요없는데 진짜...
-
말하지도 쪽지하지도 마세요.
-
1. 모의고사 물2화2 만점 + 전과목 1틀 주장하는 오르비언 등장 -> 메인 감...
-
김범준이 살뺀 느낌
-
하다못해 대학 입학도 단순 줄세우기가 아닌데 쟤가 나보다 공부 못하는데 뭔자격으로...
-
롤체어랴워 6
-
쪽지 환영. 댓글도 좋아요.
-
약대좋죠 0
붙고한번도안가보긴했었는데 메디컬끝자락이라도 붙었을땐좋았음
-
작수 비문학 1개 언매 4개 틀리고 문학 다 맞고 올해 국어 만점인데 국어 칼럼 써볼까
-
남고기준 한 학년에 이름 김범준인 새끼 최소 3명씩은 있음
-
계속 막힌 느낌이 듦. 수능 전에는 이러지 않았는데 하아..
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!