경제학과와 과탐의 연관성(경험에 비추어)
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어디가심
-
잠 많이 자니깐 1
피부 좋아짐
-
실모 난이도로 수험생 우민화까지 시켰는데 미적 84가 2네
-
갱 챠 냐. 5
딩딩 딩딩딩. 딩딩 딩딩딩.
-
지금 두끼 먹는데 한끼로 줄일까 밥차리고 양치하고 하면 아무리 빨리해도 1시간이고...
-
1단원에 없는거 맞나. 받침 없고 한자어는 ㄹ 뒤에 ㄷ,ㅅ,ㅈ
-
쌤 식 올리셔서 반 애들끼리 축가 연습 중인데 기침 너무 많이 해서 제대로 못...
-
공통은 막판 이감만, 화작은 막판 강k 상상 정도만 좀 어려웠음 나머지는...
-
올해 제주의 일반 막차로 들어가는 애는 제주약수애들도 비웃을 성적일거임 아마 그럴...
-
ㅈㄱㄴ
-
2학년 탐구 경제 생윤 사문 물리하고 확통 언매 했어요 3학년때 미적분하려고 하는데...
-
트럼프 "취임하자마자 바이든 정책 폐기"…속도전 예고 1
[앵커] 도널드 트럼프 미국 대통령 당선인이 20일 취임과 동시에 바이든 행정부의...
-
메즈걸린 미쿠 0
-
룸메랑 같이 화장실 샤워실 쓰는거 안불편한가여?
-
개웃기내 1
ㅋㅋㅋㅋㅋ
-
전 화작 아예 안 해보고 언매 했는데 과외생이 언매 하기 싫대요ㅠㅁㅠ 화작을 가르칠...
-
올해 전략 2
수과탐에 시간 다박고 (특히 미적) 국어는 운빨메타 9월부터 실모로 공부 시작할듯...
-
주5일제로..
-
과년도 서바 브릿지 문제로 n제 찍어내서 갖다 팔아도 괜찮지 않나
-
07이고 지금 언매 고1때 돌린거 빼고 아예 놨었음 이번에 3-1때 내신으로 해야되는데 고민입니다
-
모든 공부를 마스터했으니 올해 인설의는 무조건 뚫을거같다는 착각이 들었는데 알고보니...
-
7모 97점 백분위96.08 9모 97점 백분위 93 10모 97점 백분위...
-
비록 사문이 무지막지하게 망해서 재수하지만 정법 50덕분에 (떨어진)논술 최저도...
-
지인한테 부탁해서 오르비언 찾아볼까
-
집 와서 거울 보니 ㅈㄴ 떡짐 노벨 물리학상 노리는 중
-
'언매"
-
태권도 17
이거 왜 태꿘도라 발음함
-
비음화 유음화 어쩌구 이름만 기억난다는거임
-
이태원클라쓰 넘어선 빡빡이클라쓰 보여드림
-
올해스카이갈수있겠죠ㅠㅠ
-
새벽에 봐요 0
잘자요
-
[단독]“트럼프, 급진주의에 유리한 발언 안할 것” 3
[앵커] 트럼프 2기 행정부 출범이 한국에 미칠 영향도 관심입니다. 트럼프의...
-
현역이구요 선행을 안해놔서 이제 막 시발점으로 미적 끝냈는데 기출을 뭐로 하는게...
-
다들 안뇽 3
-
있는 건 상관없는데 물고 빨고 지랄들을 해라
-
ㅂㅅ이라는 심한말은 제발 ㄴㄴㄴㄴ
-
확통 진짜 너무 안맞아서요 쎈이랑 시발점 워크북도 거의 3문제마다 한 번 막히는 거...
-
조금만 마시자
-
뭐 24수 언매처럼 나오면 틀릴수 있겠지만 그건 공부한다고 맞추는 것도 아니고 올해...
-
난 간다 5
공부하러 갈겡
-
수능언매다맞
-
집 왔어요!! 11
다들 오늘도 고생많았음뇨
-
진짜 선남선녀많구만 11
쭈구리가 되엇다
-
너무싫은게 1
오늘이 지나면 내일이 찾아오고 그렇게 지나간 시간이 모이면 수능날이라는거 러셀...
-
올해까지는 그래도 걍 별 차이없는거같은데 내년은 좀 다르지않을까 흐음
-
오늘도 여전히 16
여친구해요
-
(괄호는 동급간에서의 우열) 서연고 (서연고)-자타공인 명문대 서성한중...
-
여기 정원 21명인데 진학사 잡았던거좀 보삼 펑크날수밖에 없음
-
지금 공부 시작하셨나요?
인정.
오...그렇군요
수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.