[수학2] [240111] 또 접해?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
18수능 세대입니다 의대목표로 다시 공부해보려고하는데 지금은 수학이 미적 기하 확통...
-
여캐일러 투척 0
수능 정복 13일차
-
그레이엄 하먼은 아직 살아있는데 문항 출제 잘못하면 평가원 또 사과해야하는거 아닌지...
-
꽤나 오래된 역사를 지닌 곳
-
동대 입학처 오늘 일 함?아는사람
-
동아의 카관의 let’s go
-
국시 자격 여부는 교육부 소관이라고 그럼 불인증먹어도 국시칠수있을듯..? 교육부...
-
잇올도착 1
투데이스타트
-
경지를 향한 단련이 필요하다
-
ㄹㅇ
-
오늘 밤에 하면 마감되어있을까요?ㅠ
-
손 핏줄이 갑자기 무슨 헬창 급으로 올라오는데 이거 왜이럼
-
10만원 넘지 않고 스테이크 맛있는 뷔페로요
-
나는 왤케 4
아파트 외벽에 붙어서 도망치는 꿈을 많이 꾸냐 전생에 도마뱀이었나
-
개빻았는데 빨리자서 다행이다
-
수분감 수1특 5
솔직히 틀딱기출문제 거른거 많음...
-
영어는 그래도 약간? 재밌으니까
-
춤추는 너의 모습은
-
비도 조금씩 오는데 달리니까 시원하고 좋아요
-
희망을 가chill guy
-
많을라나 막상 학교첫날갓는데 마음에들면어카지
-
술이 아직도 안 깨서 어지러운데 ㅅㅂ 인생
-
인강 한번 듣고 그 내용을 어케 다 기억하고 적어내림? 이게 될 정도면 애초에...
-
화작 교재 추천 0
화작 기출교재 어떤게 좋을까요? 강의는 안 들을 예정인데 뭐가 가장 괜찮을지 추천좀 해주세요
-
파송송 계란탁
-
자야지 0
-
얘 태어날때 데뷔했는데
-
집가는길 1
으어
-
공공인재는 최초합해서 4년 반액장학이고 경영은 추합 기다리고있는데 장학금...
-
오르비는 망했어 2
-
잠버릇 고약하네..
-
으으 2
피곤피곤
-
단국약 예비 31번, 전북약 실공10등 둘중 하나라도 될 가능성 있을까요?
-
주가조작으로 잡혀가셨다네요 조의금은 여기로
-
야추 ㅇㅈ 4
'옯붕아 이리와서 앉아봐라.'
-
사랑해요
-
진짜 ㅇㅈ마렵네 2
오랜된 생각이다
-
동아리 195화 3
이게 완결이고 뒤에 화는 안 볼거임뇨
-
기차지나간당 6
부지런행
-
고전소설 진짜 한 20분 박았는데 3틀하고 멸망함 아침에 이거 줄거리까지 보고갔는데...
-
명절이 싫다 0
싫어
-
얼버기 1
ㄹㅈㄷ 갓생이네요
-
다 자셈 ㅇㅇ 7
난 안 잠
-
어느정도 반인가요? 시대 낮반보다 강대스투가 낫다는데, 이정도면 스투 가는 게 나을까요?
-
그래 뭐... 짜피 최초합은 물건너간지 오래인데
-
들어도 돼요? 고2때까진 감으로 1 맞았는데 고3 기출 푸니까 바로 85점...
-
떨치고 자야지 1
레어생각만하면 잠이 안와요
-
항상 행복하세요
-
제일 재밋어 이상태로 짝녀랑 대화하는것듀재밌옸는데
4번 맞나용
이런 문제 넘 좋아함ㅎㅎㅎ
안주무시나요..
쌩암산으로 하는데 기울기 2 짜리는 빨리 구해지는디
-1/4놈이 계산이 버벅거렸네요
저도 4번 나오네오
언제나 문제 너무 좋아요
접할때 + 통과할 때 케이스 두개 나오는걸 생각한걸 의도한 문제인가요 아니면 0에 대해서 대칭만 찾아내면 풀 수 있게끔 의도하신건가요?
잘풀었습니다.
단서가 눈에 띄는 순서가 개인적으로는
먼저 기울기가 a , y축방향이 2a 인거에서
가로길이 2 짜리 틀을 먼저 보고
그 다음에 미분계수 생각해서 도함수가 y축대칭인거까지 인제 고려해서 -1,0 이랑 1,0 을 기준으로
그 점들이
1.접점일때
2.접점 아닐때
로 케이스 찾는 ,요 순서가 의도일거같아요
저랑 좀 다르게 푸셨네요 저는 절편이 대칭인걸 이용해서 원함수 절편 k로 두고 k=2a-k 해서 함수개형 ax-a로 풀었는데 먼가 계산하다보니 의도대로 푼건가 싶었어요.
풀이 보통 두 가지 정도 나오는데 둘 다 좋은 풀이였던걸로 기억합니다!
통과할때가 변곡점을 얘기하시는거면 그거는 의도에 없었고
0에 대해 대칭을 의도한건 맞아요
사실 고3때인가 문항제작 1~2년차에 만든거라 잘 기억이...
아아 의도대로 푼게 맞나보네요 되게 문제 잘만드시네요! 멋있네요 팔로우하고갈게용
근이 -1 -1 +2 (-1이 접점일때) 뜨는 직선
근이 -1 1/2 1/2 (-1이 안접하고 통과할때) 뜨는 직선
에서 안접하는걸 통과라고 말씀하신거 같아요
네 이거 말한거에요!
처음 풀 때 ax -a 구하고 기울기 a에 (1,0)을 지나는 거로 푸니까 이차함수 두 근이 바로 나와서, 저 케이스분류 생각 안하고 풀렸는데, 풀고나니까 제작자 의도는 두개가 지나는걸 먼저 생각하길 원했나? 싶어서 질문한겁니다!
아아아 만들 때 의도는 대칭 이용 -> 접선의 방정식 정석 계산 / ax-a로 고정점 하나 찾기 두 가지 다 풀 수 있는거 인지하고 냈던거 같아요
팔로우 감사합니다!
비율관계는 신이야
삼차 + 접선 => 95프로 확률로 비율관계가 사기적
기울기가 2인 경우는 머릿속으로 금방 생각이 나는데
-1/4인 경우는 계산을 좀 해봐야 나오네요 ㅋㅋ
각 직선의 접점을 (-t, -f(t)), (t, f(t)) 라고 해보면
x = t에서의 접선의 기울기는 f'(t), y절편은 -f'(t)니까
-f'(t) = -tf'(t) + f(t)
(t - 1)f'(t) = f(t)
(t - 1)(3t² - 1) = t(t + 1)(t - 1)
(t - 1)(2t² - t - 1) = (t - 1)²(2t + 1) = 0
t = 1 or -1/2 이므로 a = f'(t) = 2 or - 1/4
이렇게 풀어보니 답이 한번에 다 나오는 것 같습니다
4번(암산 캬캬)
함수자체가 y=ax를 x축으로 2만큼 이동한다고 봐도되니
(-1,0)에서 접하거나 -1을 뚫고 1/2에서 접하게 하기!
정답!