[강윤구T] 문제해결의 방향성(feat. 4점공략법 현강 개강 안내)
안녕하세요 강윤구입니다. 오늘은 문제해결의 방향성에 대해 말씀드려보겠습니다.
많은 학생들이 수학문제를 풀 때, 조건을 먼저 봅니다.
조건을 보면서 어떻게 이용할까를 생각하죠.
이런 방식으로 시작하면 어떨까요? 막연합니다. 조건이 무엇을 의미하는 것인지, 왜 있는 것인지
모르기 때문이죠. 또한, 수학에서 하나의 조건은 여러 방식으로 이용될 수 있기 때문에
어떤 해석의 방식을 선택해야 할지도 모릅니다. 즉, 조건을 먼저 보는 것은 비정상적인 문제풀이라는 뜻입니다.
(위의 이미지는 4점공략법 본편의 첫번째 내용입니다.)
문제는 너무나도 당연히 목적을 먼저 보아야 합니다.
그리고 필요한 조건을 찾아야 합니다. 이것은 너무나도 당연한 생각입니다. 하지만 많은 학생들은
이 당연한 생각을 하지 않습니다. 작년 수능 미적분 28번을 예로 들어볼까요?
미적분 28번 문제의 목적을 살펴봅시다. 누가봐도 f(x)가 필요한 상황임을 알 수 있습니다. 하지만
f(x)에 대해서는 x<0인 함수만 제시가 되어 있을 뿐, x>0에서의 함수는 알려져 있지 않습니다.
즉, 미정계수를 구하는 상황이 아닌 함수를 생성하는 상황이 되는 것입니다.(목적인식)
즉 목적을 확인하면 길은 정해지는 것입니다.
그러면 생성의 과정 중 무엇인지만 선택하면 끝나겠지요?
생성의 방식은 5가지입니다. 이중에 해당되는 것을 고르면 됩니다. 누가봐도 x<0일때의 특구함이 제시가 되어 있으니
4번째 방식임은 결정이됩니다. 하지만 항등식이 없네요?
그러면 항등식, 즉 식을 생성할 수 있는 표현이 있어야 합니다.
식을 생성할 수 있는 표현은 무엇이 있을까요?
수능 수학에서 좌표평면, 함수로 식을 만들 수 있는 방법은
'길이, 기울기, 길이, 넓이, 대입, 접점'
5가지만 나옵니다. (미적분의 모든 식생성 문제는 이 5가지로 식을 만듭니다.)
여기까지 분석하면 문제에 이 5가지의 표현 중 하나가 반드시 있음을 예상할 수 있지요?
실근입니다. 대입하면 항등식이 만들어집니다.
그러면 특구함을 확장해서 함수를 생성할 수 있음을 알게 됩니다.
(물론 부등식, 함숫값 이용해서 필연성도 확인할 수 있으나 길어지니 여기까지만 적겠습니다.)
그 뒤에 이어지는 부분은 지식적인 부분이 되겠죠? 계산 연습, 기초지식으로 해결할 수 있습니다.
이 과정에서 '직관', '재능'이라는 단어가 들어갈 구석이 있습니까?
수능 수학은 공부를 제대로 하면 누구나 어렵지 않게 문제풀이 방식을 고를 수 있습니다.
사고의 방향이 반대로 되어 있으니 직관적으로 찍어야하고, 재능이 필요해지는 것입니다.
조건이 아니라, 문제의 목적과 상황을 분석하고, 그에 맞는 필요한 조건을 능동적으로
찾으러 갈 수 있는 공부. 그런 공부가 진정한 시험 준비라고 할 수 있습니다.
그냥 단순히 조건보고 하고 싶은 것을 하는 것, 느낌적으로 끌리는 문제풀이를 고르는 것....
이런 것은 공부가 아닙니다. 공부를 하세요. 공부를 하시면 수능수학 충분히 극복가능합니다.
이런 정상적인 문제해결 과정을 배우고, 암기하는 것.
이것이 4점 공략법입니다.
개강 : 3월 9일 토요일 6시 30분
수업내용 : 수학 문제의 목적과 상황, 그에 따라 필요한 조건의 해석방식의 학습
대상 : 2등급이상 혹은 스타터 학습이 완료된 학생들
인강과의 차이점 : 4공법 본편 교재의 적용과정 손글씨 해설 제공
루틴용 + 적용연습용 주간지 제공
수강신청 링크 : https://academy.orbi.kr/intro/teacher/501/l
수업때 만납시다.~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
누굴 잡아족치겠다고 계엄령을 여는거임 북한 얘기는 또 왜하고
-
담을 안넘은 죄
-
계엄령 자체로 근들갑 떨지 말라하는건 뭐지? 설마 그 뜻은 아니겠지?
-
추천 안받는다 이미 보고 왔다 ㅋㅋ
-
고2때부터 정시준비해서 작년겨울방학 때 김동욱 언매 체크메이트하고 이번년도...
-
저거 뭐임ㅋㅋㅋ
-
살아서 다행입니다
-
법적으로 이거 설마설마설마 가능하기는 한가여
-
영화본 느낌이네 2
윤즈 도파민
-
인구구조상 이제 30년은 진짜 먹을듯함
-
그냥 자러갑니다 0
잘자요~ 별일없길 ..
-
우선 저는 2차계엄이 가능한지, 해제 후 재계엄까지 쿨타임?이 필요한지는 모릅니다....
-
이거 프사하고시픔뇨 10
어떰뇨
-
보통 군수 대부분 하나요?? 요즘따라 수능공부가 마렵네요..
-
대통령은 계속 계엄령 딸깍 하고 국회의원들 전부 본회의장에 텐트치고 계속 해제표결 딸깍 ㄱㄱ
-
나도 잘까
-
다음 대통령때 국회 법안 프리패스 시키려고하는거아닌가 이정도면 ㄹㅇ 뭐임뇨
-
1석은 이준석으로 밝혀져...
-
가짜뉴스 출처확인도 안하고 퍼뜨리고 스토리에 되도 않는 불안감 조성 ㅈㄴ 하고...
-
이미 25증원 예산 전액삭감에 의평원 인증 무력화 작업도 실패한지 꽤 됐는데 이제...
-
하.........
-
국회에 보수는 한동훈계하고 이준석계만 남을거 같음. 3
친윤궤멸 확정일듯.
-
내프사귀여운듯 11
맘에들어
-
일부러 수능 뒤로 잡은듯
-
가능은 한데 그거까지 하면 아마 이제 개헌되고 내각제 시즌2가 되지않을까
-
과연?
-
절차상 국무회의 심의를 거쳐야 해제가 되지만 국무회의는 의결기관이 아니라...
-
다들 어디가,,,, 이렇게 라도 모여서 좋았다구,,,,,ㅠㅅㅜ
-
이정도는 해야 지구 1위 부자 해보는 거구나 부럽다….
-
윤통의 큰그림 0
국힘이 계엄령에 반대하게끔 하고 다시 지지율을 끌어올리기 위한 윤버지의 계획아닐까?
-
정확히 말하면 윤석열이 계엄 해제 선언 안하고 뻐팅기면 8
계속 계엄이 유지되는거임 근데 법상으로 계엄이 유지된다해도 국민이 그런거같지 않다고...
-
예나 0
잘자..
-
윤석열 어차피 무기징역엔딩인데 다음 무브 있을수도 있음 5
이미 무기징역은 확정임..
-
석열 스구루…
-
대박
-
ㅋㅋㅋㅋㅋㅋ
-
수만희인가 어디서 보기론 논술충원률 12프로정도던데 맞음? 올해 연대는2배하고...
-
곧 대통령이 되실 그분으로
-
빠꾸먹어도?
-
Sky가고싶은데 1
1사탐 1과탐(물리) 할거에요. 공대나 경영을 목표로 하고 있는데 사탐 과탐...
-
시험장에서의 체감 난도가 점점 덜 느껴지고 기억이 미화되면서 예측 컷이 점점...
-
자고 있나? 4
진짜 잠?? 뭐하노
-
2차 계엄은 ㄹㅇ
-
계엄령도 9수하려나
-
가비지 이닝 처리해야되는데
-
무한선포 가나요
-
공물시험 보기 시져시져
-
어..
수업은 오르비에서만 진행하시나요???
넵 그렇습니다.
대 윤 구
시간이 안맞아서 못듣네요
생성의 방식은 5가지입니다. 이중에 해당되는 것을 고르면 됩니다. 누가봐도 x<0일때의 특구함이 제시가 되어 있으니
여기서 특구함이 오타난 것 같아용
좋은 칼럼 감사합니다!
'특구함' = '특정 구간의 함수'입니다. 오타가 아니라 제가 쓰는 말...입니다ㅎㅎ
강의 너무 잘 듣고 있습니다. 항상 감사합니다!
쌤 제 닉 어때요
오 신기해
매우 좋은 글인 것 같습니다. 허나 초보~중수까지는 조건 보고 뭘 할 수 있는지 리스트 자체가 안 세워지는 경우도 많죠. (개념이 부족함)
저 리스트를 저에게 배워야죠ㅎㅎ초고수도 저런 리스트를 스스로 만드는것은 쉽지않다고 봅니다.
무의식적으로 생각하는것과 그것을 도식화하는것은 다른것이니까요