분수함수 예제
어떻게 푸실 건가요.
미분해서 연립하실 건가요?
그것도 나쁘지 않지만, 이렇게 해보세요
맨 아래 식이 완전제곱식이면 됩니다. 접하니까요.
a가 18이면 딱 되겠네요. 그러면 (x-4)^2 이니까요.
이 말은 b는 4라는 소립니다.
x-4의 제곱이니까요.
나머지 극점은 어디에 있을까요?
- 18/4 일겁니다.
x절편인 -1/4 과, 극점 위치인 4가
17/4 만큼 떨어져 있기 때문이죠.
항상 등간격으로 떨어져 있어야 합니다.
함수가 대칭도 아닌데 왜 그래야 하냐구요?
방금 보여드린 아이디어들이 너무 특수한 거 아니냐구요?
아래 링크를 확인해보세요. 도움이 될 겁니다!!
이 글에 좋아요는 눌러주고 가세요 ㅎㅎ
#무민
0 XDK (+2,000)
-
1,000
-
1,000
-
우에에에에ㅔ엑 퉤퉤퉤
-
흐흐
-
평백88에 영어3등급이면 어디가 적당한가요 평백 적정대학은 영어때문에 다 못가요ㅠ...
-
나중에 백퍼 떨어짐??
-
진짜로? 그냥 정모 같은 걸 안 나가면 시간 꽤 있는 거 아니냐... 궁금해서 그럼...
-
필요충분조건으로 바꿀 수 있다면 바꾸자
-
냥대 4
한양대 인문논술 문단구별 안 하면 망하나요…..
-
완전 쌩 노베로 6월부터 시작해서 임정환 사문 리밋 완강 ->자이스토리1회독...
-
국어 이비에스는 분석 안하고 대충 문풀 벅벅하고 분석서 대충 읽으면됨 2
내신마냥하는건좀너무간듯 적당히 하면 금방 끝남
-
6평은 응시 안했고 9평은 원점수 100 수능은 원점수 98이었는데 사설 풀면서...
-
치질 또 터졌네 14
아이고 아이고
-
주요대학 자연계열 과탐응시하면 가산점 3~5% 주는게 사탐이 표점 높은거 커버하거나...
-
나는 왜 92인가에 대한
-
쫄려서 못함 그냥 하던 물1이나 할래
-
소개해주셔서 4회 이상 수업하게 될 경우 소개해주신 분께 개인 수업 - 인당...
-
아니면 둘다할까 흠…
-
9모보다 쉬웠나요?(확통선택) 제가 9모랑 비슷한 점수 받았는데 (9모70점...
-
네즈
-
광운대 입결 0
광운대 공대의 경우 인식이 아주 좋고 인서울인데도 왜 전자공학과여도 서울이 아니여서...
-
ㅈㄱㄴ
-
기출 너기출 수1 수2 한완기 미적 N제 이로운 N제 시즌1 이해원 N제 시즌1...
-
궁금..
-
중대 논술 오전 1
1번 확통문제 4××/2025 나온사람 있나요?
-
재수할거라 그냥 봤는데 ㅋㅋㅋㅋㅋㅋ 모든분들 고능아라서 열심히 쓰는데 나 혼자만...
-
어차피 거기서 앵간하면 다 나오자너
-
한양대 렛츠기릿 3
-
무료하다 25
무료해...삶이 무료해
-
다군 6칸 0
보통 지금 다군6칸이면 실채 뜨든 변표 뜨든 붙는게 정배죠?
-
아니 무슨 언매같은거 개념공부를 첨부터 시작하라는 것도 아니고 각잡고 빡집중이...
-
체질개선 약침 놓아주는것도 같이해주네요? 관리 끝나면 한약 서비스는 다니는 지점...
-
저 09년생 여자인데 11
아이스크림 좋아하니까 깊티보내
-
그다음이 이해원/4규 문해전는 나만 풀던데 음 가끔 설맞이/샤인미/이로운..?
-
오노추 1
쫀득하고 이지리스닝하기 좋음
-
컴공은 높공인가요 11
아마도 그런것같은데
-
저만 75제곱분의 몇 이렇게 나왔나요?
-
잠온다<---- 씹상남자
-
https://orbi.kr/00070104327...
-
오야코동마렵다 6
으흐흐
-
요즘은 전반적으로 n제들 퀄리티 높아졌지않나요
-
그땐 ㄹㅇ 공통에서 승부를 본다는 느낌이 강했는데 (11~15까지 4점짜리에 걸맞은...
-
언매/미적/정법/사문 93/88/2/50/45or43 불확실 43 기준으로 입력,...
-
개념서 하나 봐야겠다
-
작년 한양대 수리논술 합격생이 드리는 간단한 TIP입니다..! 0. 수험표는 알아서...
-
혼코노로 보컬로이드 11
그게 바로 나 뿌듯
-
수학 0
님들 김깋이번 2025수능 확통 20,21,22번 3문제 틀려서 88점 받았는데...
-
마포대교 2
이거 쓴 사람 나와가지고 오르비에 인증해라
-
ㅈㄱㄴ 지인찬스?
-
주말 이틀 알바 정도면 20
지금~1학기에 복학하고서~내년 수능 때까지도 병행 가능하겠죠? 수능 전 1, 2주...
-
뭐 낮공 높공 그렇게 부르는거 있잖아요
-
국1수1영4지3물4지6 어디될까요?ㅠ 물지 ㅊㅂㄹ ㅠㅜㅜ
저라면 1/2를 빼고 볼 것 같네여 ㅎㅎ
이제 수학(상)에서도 합법적으로(?) 저런 문제를 낼 수 있다니 너무 좋아여 ㅎㅎ
1/2 을 뺀 이후에 어떻게 하는건가요?
그럼 극값 0 될 테니 대충 분자 중근가진다 쓰려고요
-1/2 4 1-a/2 될 건데
1-a/2=-8이므로 a=18
전 이렇게 떴어여
잘 푸셨습니다 ㅎㅎ
수학황 ㄱㅁ
확통 칼럼도 써주세용!
좋은 글 정말 고맙습니다
극대 극소를 부등식과 등호 성립조건으로 이해하자.
ax+b/x²+c가 극댓값M을 갖는다(단, c는 양수)
ax+b/x²+c<=M 이 극대를 갖는 x근처에서 등호를 만족시키며 성립한다.
ax+b<=M(x²+c)가 등호를 만족시키며 성립한다
M(x²+c)-ax-b>=0에서 판별식D=0을 만족한다
극소도 마찬가지로 증명
사실 고등수학 상 에서 내던 문제죠 일차/이차가 최대or최솟값을 갖는다고 문제가 나옵니다
굉장히 좋은 인사이트 인 것같기는 한데
확통 선택자는 저거 쓸 일이 없겠죠? ㅜ.ㅜ
네 ㅜ 미적분 과목에서만 쓰일 것 같습니다
그래도 좋은 칼럼 감사드립니다 :)
공통과 확통에서도 좋은 칼럼 기대할게요!!
오르비의 순기능이시네여
이거 강기원 수업때 들었던..
로컬 맥시멈 미니멈 ㅋㅋㅋ
부등식으로 표현하고 등호성립조건 체크하자 ㅋㅋㅋ
저거 뉴런에도 나오지않나
보통 점대칭×우함수는 대칭이 아닌거 맞죠??
네 그렇죠. 그런데 특별한 조건을 만족하면 둘의 곱이 점대칭이 될 수 있습니다
x=a에 대해 선대칭인 함수와
(a,0)에 대해 점대칭인 함수를 곱한다면
그 결과는 (a,0)에 대해 점대칭일겁니다.
x제곱 곱하기 x세제곱이 x5제곱으로 점대칭인것처럼요
와 강기원T내용이랑 똑같네
저는 강기원 쌤과는 아무 관련이 없는데 …
내용이 겹쳤나보네요 ㅜ ㅋㅋ
강기원쌤 부등식 관점은 극대 극소에 한정되지만 무민님 관점은 방부등식과 접선 등 다양하게 연계되어서 활용될 수 있다는 점에서 배울게 많은것 같아요 항상 감사드립니다
헉
저거 왼쪽에 이차 분의 일차 함수 어떻게 그려지나여?
https://orbi.kr/00063758834
본문에 걸어둔 링크인데요, 저거 타고 들어가면 함수가 어떻개 그려지는지에 대한 자세한 내용 보실 수 있습니다.
대충 위 사진처럼 그려져요