수학 급합니다!!! 다항식에서 미지수의 차수는 무조건 자연수인가요??
제목이 곧 내용입니다~~ 카이스트 면접 대비하는데 헷갈리네요,,ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혼코노 ㅇㅈ함 4
약간의 변조와같이
-
화학1에서 옮기려함
-
읏흥흥
-
냥논붙여줘 0
하 입실까지 11시간
-
백분위 언90 미66 생81 지 나락 11점에 영어 4인데 어느 대학 갈 수...
-
둘 다 좋은 책인데 가격이슈로인해… 하나만 초이스해야할듯
-
그딴거 없어요 왜냐하면 저는 올해 6모 하나만 집모로 쳐봤기 때문이죠 그 뒤론...
-
장기자랑이란건 4
배를 스스로 갈라서 내장을 보여주는거겠죠..?
-
백분위 터진 42 1등급 나오고 40점 표본 부족으로 10.xx후 백분위 터진 39 2등급 희망
-
아니죠??
-
47이 겁나 많은건가
-
저는 중학교때 영대비학원 친구
-
서울대 낮은과에서 복전하며 삶이 많이 힘들어질까요..
-
올1보다 한 두 개 2 뜨고 미적 99 100이 더 많네 왜 그런 거여?
-
ㅈㄱㄴ
-
군수 하기 전에 1
사탐런 할건데 사탐 개념이라도 끝내 놓을까요? 3월 입대 할거 같은데..
-
작년 내내 물지 붙잡고 공부했는데 수능때 문제 하나에 말려서 탐구만 백분위 엄청...
-
유대종 기실해 독서에 내신 범위 들어가는 지문이 있어서 듣고 싶은데 기실해 언매만...
-
아 여대가고싶다 2
그러나 남자라서 ㄴ하나가 더 붙어이썩
-
수학 백분위 99가 왜케많지 ㅈㄴ위축됨 그거보다가 오르비 들어왓는데 수학88...
-
과탐 98 95면 연고 라인에서 탐망/잘 중 어디에 속하나요? 이 라인에서...
-
화작 1컷 2
93이 1등급 뜰 확률 0에 가깝겠죠…화작 1이 안 뜨면 토요일 논술 최저 못...
-
심리적으로... 삼수 해보니까 사수도 하고싶네요 올해 안끝내면 초장수생 루트 탈듯
-
남대가고싶다 14
땀에젖은옷킁카킁카
-
희망고문 당함
-
지2는 ㄹㅇ재밌어보임
-
낮에 노래방 갔는데 아예 아무도 없는거임,,, 그래서 맘놓고 애니오프닝 몇곡 조짐요...
-
대가리 깨질뻔 ㅎㅎ
-
ㄹㅇ…
-
개국 0
근데 궁금한 게 있는데 약대 나와서 취업하고 회사 다니면서 약국 차려놓을 수...
-
실모기만질ㅇㅈ 7
네
-
논술 수험표 1
컬러로만 뽑아야 하나요? 흑백 안 됨??
-
그치 이거지 ㅠㅠㅠㅠㅠ
-
여대가고싶다고만 올렸더니 먼... 단체로 조롱에 어이가 없내요 찡찡거려서 ㅈㅅ...
-
어그로 ㅈㅅ 연고서성한중경 컴공이나 공대 희망하는데 물지 -> 지구사문 어떤가요
-
공부인증 8
3강도 들으려했으니 81분이라 포기.
-
클리드방송보기 2
흐흐
-
현역 고민상담 0
현역때 물1 지1을 선택한 학생입니다. 이번 수능에서 탐구는 45 42로 나쁘지않은...
-
(사탐런 하시는 분들 말고) 과탐 원과목 선택 고민 되시는 분들 하던 과목 하시는...
-
on 3
치지직
-
미적88 확통94 기하91 예상 절망회로 풀가동
-
신청한김에 영어독해문제집 풀어보고싶은데 어떤강의가 좋은가요???
-
백환 언매 0
들어보신분 있나요? 방학때 현강 들어볼까 해서요
-
외모
-
다들 어디갓어 불금이라고 즐기고 있나본데
-
수시 종합 "국민 인하 숭실" 중에서 뭐가 제일 높고 낮음?
-
진학사를 안사서 그런데 혹시 서강대 다군 자전 점수컷이 어떻게 되는지 알 수...
-
영단어 암기 팁 2
인지 심리학 입문, 장기기억(부호화) 내용 중 *정교화는 입력 자극에 부가적인...
x+3 -> 3은 0차 아닌가요...?
아! 상수항 제외하고요!! 죄송합니다
...문득 이 질문을 보면서 - 저도 제대로 답은 못하겠지만 - 처음부터 공부 다시 해야겠다는 생각이 드네요. 차수가 음수면 분수함수고, 다항함수가 아닌가...? 싶기도 하고, x의 루트2승이면 어떡하지...? 싶기도 하고... 아무튼... 답은 못드리지만 배워가요-
지수법칙 유도과정생각해보시기 바랍니다
일단 지수법칙은 정수에서 정의합니다
그리고 a^0을 정의하고 음수로까지 확장합니다
그리고 이것을 분수로서 정의하죠
그리고 거듭제곱식을 정의하고 유리수로서 정의합니다. 즉 분수꼴은 무리식이라는것을 증명할수있죠
실수는 교과과정상 그냥 받아드립니다
대충 이정도에서 서술하면 적어도 감점은 없을것같네요
오... 생2괴물 키랄님이 댓글을 달아주시다니..ㅎㅎ
지금 문제의 조건이 x^a 에서 a가 0초과라고 제시되어 있는데 이걸 미분한 ax^(a-1)에서 a-1이 0이상이라고 봐도 되는지 궁금해서요~~
지금 정확히 어떤지점이 문제가 되는지 명백하게 다시 좀 써주시겠어요?
만일 a가 '음수가 아닌 정수'라는 제한조건이 안나와있다면 a-1을 0이상이라고 볼수 없습니다(음수가 될 수도 있기 때문에)
그런데 만일 a가 '음수가 아닌 정수'라는 제한조건이 걸리게 된다면 a-1을 0이상으로 봐도 무방해서 이렇게 질문 드립니다
그런데 밑에 lemonaid님이 올려주신 거에 따르면 후자가 맞는것 같네요!!
정말 감사합니다~
다항함수의 미분에서 양수일때는 인수정리를 통해증명하고 음수는 몫의미분으로 증명하고 유리수는 음함수미분 실수는 로그 미분으로 증명된상태인데 어떤지점이 이해가 안가시는건가요?
일반적으로 차수내리고 하는거를 그냥 배우긴하지만 일단 교과과정내에서는 실수까지 확장시켜놓고 학습시키고 있습니다
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
차수가 실수로 확장되는 건 다항식으로 보지 않는 것 같은데... 제가 틀렷나요?
차수를 실수로 확장시키는 건 따로 '다항식'이라고 부르지를 않는 것 같습니다
제가 면접 문제를 풀면서 이해가 안된 것은 문제에 '다항식'이라는 조건이 그냥 툭 던져졌는데 여기에서 x의 차수를 0이상인 정수로 봐야되지 않을까~ 싶어서 질문드렸습니다!! 이렇지 않으면 문제가 안풀려서요~~
P.S:UAA모의고사 너무 잘풀었습니다!ㅋㅋ(공동저자분 중 1명 저희 학교..ㅋㅋㅋ)
아 약간 혼선이 있었네요
제 말의 의중은 그 알고계시는 미분법은 다항함수던 아니던 편하게 사용할수있다는 의미였고 다항식의 정의는 음이 아닌정수가 맞습니다
예를들어 기출에서도 극한문제에서도 다항함수라고 주어진경우에는 차수를 결정지을수있다
여기서도 자주 사용되는 이론이기도 합니다
제가 말씀드리고 싶은거는 지수의 확장에서 배운내용에 의거하면 음수인경우는 분수꼴이므로 다항식이 아니고 약분되지않는 유리수형태인경우 무리수임을 인지하게 함으로서 다항식이 아님을 그냥 고교수준적으로서 설명해드릴려는 의중이었습니당
네 키랄님 정말 감사합니다!
넵! 도움되셨다면 저도 기쁘네요!
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
정말 감사합니다!
음이아닌 정수 n에 대하여 fx= anx^n+an-1x^n-1 +...+a0 [an~a0는 실수]를 다항식 이라고 부르는거 아닌가요?