스포) 샤인미설맞이 손풀이+간단한 해설
주말엔 쉬는편이라 이제야 봤네요
간단한 리뷰를 하자면 킬러(15번)가 진짜 아름다운 문제였다고 생각
준킬러는 되게 쉽지 않았나 싶네요
1컷 88?(미적분)
f(k) f(-k) 전부 4^x면 곱이 2/9가 나올 수 없겠죠
매일 하던대로 넣고 벅벅 계산으로 마무리
g, h모두 f 최고차를 따라가니 최고차 대충 잡아놓고 무한대극한으로 최고차 계수 구하고,
x->1조건에서 g-h = 2f(x)인걸로 f(x) 식 작성 마무리
구하는것도 2f(4)라고 바꿔 보면 되겠죠
홀짝나눠서 한쪽은 그냥 상수*6, 한쪽은 제곱 시그마 합 공식을 벅벅
접선끼리 평행이동(x로 3만큼) 관계에 있어서 x절편 평균값이 -1이다로 놓고 직선 구해서 다시 함수로 돌아가서 함수 확정해주면 끝
14번 도형치곤 사설에 절여진건지 너무 쉬웠다는 느낌?
각 점이 전부 원점에서 거리가 같아서 원주각-중심각 관계로 Q든 P든 x,y좌표값 비가 코사인 조건에 의해 특정되는거만 발견하면 아주 쉽게 풀리죠
너무 어렵고 아름다운 문제
(나)조건에서 f(f(1)),f(f(2)),f(f(m))이 전부 같고 f(자연수) 값들 중 최소임을 먼저 느껴야되고,
최고차 음수면 계속 값이 작아지니 (나)조건을 만족시킬 수가 없고,
양수일 때는 x = f(1), f(2), f(m)을 지나고 y좌표가 대충 무언가라고 두고 다시 생각해보면,
f(1)이 1보다 크면 f(1)이 f(f(1))보다 반드시 작아지니 모순, f(1)=1
f(1)이 1이니 대충 무언가로 둔 y값도 1
또한 이러면 f’(1)>0인 개형이 되니 f(m)>f(2),
f(m)~f(2) 간격이 1보다 크면 그 사이 어떤 값에서 f(자연수)의 최솟값이 생기므로 안됨, f(m)=f(2)+1, 조건에 따라 f’(1) = 15/2
위에 작성한 식에 2대입해서 f(2) = ~~, f’(1)값으로 연립하며 마무리
(나눠주는 게 가장 깔끔한듯)
홀수인 거에 짜릿하게 반응이 오면 쉽게 풀리죠 (홀수 되는 경우는 구간설정상 t=-3k/2밖에 없다)
열린구간이라 구간경계값이 최대/최소일 수 없음을 느끼고,,
{f(x)}^2이라는 함수의 극대/극소가 최대/최소가 될 수 있다로 두면 어렵진 않게 풀리죠
개수니까 부등호조건에서 n(A3) = 3이겠죠
A짝수, A홀수의 원소개수 특징을 파악하면 A5, A10이 겹치는 원소가 두 개 있어야 한다, 0은 무조건 겹치니 다르게 겹칠 수 있는 두 케이스에서 각각 값 구하고 더해주면 끝
15번이 진짜진짜 어려웠어서 22번은 좀 쉬운 느낌이네요
라이프니츠를 쓸 경우 d?/dt, 저같이 함수로 두면 ?‘(t)를 안 구해도 되는 문제였네요
a2 a5가 같아야되고 케이스 3개나오겠죠
되는 경우 하나밖에 없고 계산벅벅 마무리
0~4까지 함수가 =<x면 된다를 느끼면 나머지는 어렵지 않죠
|x|+t 위 길이니까 그냥 y값 차로 봐도 무방하고 이걸로 식 세워서 적분으로 벅벅
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글씨만 봐도 수학 고수인게 느껴지는 마법좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
후기좀 알려주세요
-
07이고요 노베입니다. 핑계지만 개인 사정때문에 지난 1년간 공부를 하지...
-
있다는게 진짠가요?
-
고3 담임쌤한테 연락 와서 정시 지균 받을 수 있으면 받으라는데 아마 학교에서 현역...
-
25수능 15 20 21 22 28 29 30 틀려서 3등급 받았습니다 ( 미적선택...
-
애니가 아니라 버튜버입니당 ㅇㅇ
-
나한테만 이래 ㅅㅂ
-
..... 10
시험 하나만 더 치면...종강이다...
-
서 연고 성한서 중 이경건시 동홍 아숭곽 숙국인 세광단성에
-
인격적으로 실망스러운 행동을 보여서 부정적 영향을 받고 싶지 않아 끊어내려 합니다...
-
지금 노베에서 수능보려고 하는데 수1 수2 쎈을 한번 풀어놨지만 다시사는게 맞겠죠?...
-
소름돋아
-
재수생 동기부여 풀충전하고 민족고대를 향해 달릴게여
-
재밋겟당
-
평소에 7시간 자도 오후쯤되면 피곤하고 8시간 자도 애매하고 9시간은 자야 개운하고...
-
접수 막판에 칸수만 보고 지르는건 좀 위험함? 표본분석 같은것들도 해야할텐데 좀...
-
어디 가야 할까요? 집은 수도권입니다. 증원 전이면 to 좋고 수도권에서 가까운...
-
질문글은 지우는 게 예의가 아니니까 안 지우고 뻘글만 지우니까 남는 게 다 공부 관련 글임 ㅎㄷㄷ
-
모집정지 때문에 의대 펑크 생기는거 아니냐 ㅋㅋㅋㅋ 1
의대 못 쓰게 하려고 모집정지 떡밥 던지는거 일리 있다고 생각함 ㅋㅋㅋ 물론 난...
-
걍 문제만 푸는 용도면 8개년이랑 옛기출 사면 되는거죠?
-
대형과 표본분석 0
선발 인원이 3자리면 걍 진학사 보면서 빌기 정도가 맞을까요 ㅋㅋ
-
강기분 문학 기말 끝나고 들어보려 하는데, 국어강의를 본 적이 없어서... 뭘 설명해주는지 궁금해요
-
없는건가요?
-
로스쿨 가려면 1
행정학과랑 공공정책학부중에 어디가는게 더 유리할까?
-
미스터 츄 2
입술 위에 츄 달콤하게 츄
-
국어는 김젬마 / 강민철 수학은 김범준 / 현우진 영어는 이명학 / 조정식...
-
추합에 추합에 추합에 계속 가다가 마지막 2월 21일 5시쯤에 극적으로 들어가보자 ㅈㅂㅈㅂㅈㅂ
-
면접 가는중… 4
오르비언들아 나에게 힘을 줘
-
하루에 5개만 답변하고싶은데 걍 답변할 질문이 존재하질않네.... 개인질문 주는...
-
렌고쿠가 6
이상형이라던 애의 말이 이해가 간다 성격ㄹㅇ시원시원하구나
-
커리가 방대하다지만 딱히 풀커리 탈 이유도 없고 독서나 문학이나 과하지도 얕지도...
-
과외 질문 4
안녕하세요 혹시 의대 가기 전 겨울 방학 때 과외하면 시급 얼마 받으시나요 현역으로...
-
.
-
대성학력개벌연구소 검토조교 신청하신 분들 합격 문자 왔나요????
-
아이 성적은 국숭세단 이나 성신 정도 인 것 같습니다. 컨설팅 예약은 했지만...
-
CPA목표로 하고있다면 어디가 좋을까요? 이유도 남겨주시면 감사하겠습니다
-
하.
-
어떻게 생각함? 영단어를 모두 안다는 가정 하에 해석이 안되는 문장은 지금까지...
-
의대 안 쓰게 하려고 심리전 하는 거 아님? 그리고 수시 발표가 났는데 어케 정시 모집정지를 함
-
[단독] ‘계엄 성지’ 별명 롯데리아, 주문 폭주하고 ‘계엄버거’ 패러디도 2
‘12·3 비상계엄’ 직전 전현직 정보사령관들이 계엄 직전 햄버거 프랜차이즈...
-
현역 재수 약대의 벽은 너무 높구나……보내줘ㅓㅓㅓㅜ 재수는 그냥 지방러라 돈없어서...
-
외대식 진학사로 649.53인데 어느정도 발뻗잠할 수 있을까요? 하...
-
간거면 개떡상한거임?
-
. 1
.
-
오르비 모솔분들은 재수때 연애할 기회가. 생기면 하실건가요
-
공감영단어 이거 너무 히트인데 공감영단어로 단어 충분함?
-
도는이유가 대체뭐임?
-
예전에 설대 중높공 가놓고 인생 한탄하던 오르비언 한명 있었는데 3
말은 안했지만 솔직히 지건 존나마려웠음 성별은 XX였고 지금은 탈릅하심
-
가군 성사과 5칸 적정 한양대 경영 경제 둘 다 6칸 안정 로스쿨 생각 있고 씨파는...