다들 수학 제일 극혐하는 파트가 어딘가요
저는 수열이랑 수2 접선활용쪽
수열은 그냥 극혐하는 유전자가 있는거같고 수2접선쪽 앞에는 진짜 그냥 계산밖에 없어서 싫음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화작 1컷 91 언매 1컷 88 미적 83 확통 88 생윤 39 사문 44 내가...
-
밀도가 높아서 그런가.
-
진짜 빠듯함... ㄹㅇ 개 바쁨
-
저 왔어요 10
새르비해야지
-
편의점 과자 1티어 12
알새우칩 감자깡 쫄병 롯데리아양념감자 매운새우깡 빵부장소금빵
-
하나만 실수해도 나락인 시험 ㅈ같으면 개추 ㅋㅋㅋㅋ ㅅㅂ....
-
극아싸 체질이라 8
지금 약속이나 알바 여행같은게 거의 매일같이 있어서 ㄹㅇ 개 힘듦 싫은건...
-
ㅊㅊ좀
-
스펙 핑까 부탁 11
가슴 E컵에 본인의 취미인 코스프레를 하기 위해 부모님의 힘을 빌리지 않고 스스로...
-
자야지 7
자라
-
대학졸업을 안했으니까.
-
저주받은 유형 2
극i 소심한 관종 관심받고 싶어하는데 막상 관심받으면 부끄러움
-
글 10개를 써버린나!
-
작수랑 비교했을 때 2과목은 성적이 완전 똑같네
-
저거 링크 뭔데 2
바이럴 ㅈ되네
-
애니 추천 2
어떤 과학의 초전자포
-
애니추천 1
페이트 스테이 나이트
-
2005.xx.xx ~ 2024.12.06
-
ㅋㅋㅋㅋㅋㅋㅋ 뭐지…?
-
스펙 ㅇㅈ 3
고졸아다고시준비생
-
애니 추천 6
제로의 사역마
-
애니 본게 귀칼 주술회전 너의 이름은 비스크돌 스파이패밀리 5개가 다임... 심지어...
-
스펙ㅁㅌㅊ 32
165 삼반수생 전재산700 모솔 내년에는사탐예정 하스스톤준프로급실력 리디에38권저장되있음
-
배고프다
-
대충 일어나서 씻고 밥먹고 마크 한두시간하고 치과갔다가 알바가야댐
-
궁금하네
-
어제 새벽 4시가 지금보다 조회수가 훨 더 많앗다.
-
만족?
-
라이트 쎈 , rpm , 쎈 중에 하나 하려는데 뭐가 좋을까요?
-
필기/기능/도로 1/6/12 운전학원 안 다녔음.
-
스펙 ㅁㅌㅊ? 13
고졸 삼수망함 애니좋아함 내년입대 아싸 소시민 원신중독 행복함
-
삼수 하지 말걸 10
아니 수능을 망치지 말걸 띠발
-
동반입대팟 구함 12
너만오면 고
-
월요일이네 4
이제 진짜 1주일 남았다는거임
-
화가 잔뜩 나니깐.
-
마음껏못먹으니까 음식영상보면서대리만족하게되는듯
-
기차지나간당 4
방송켜라.
-
미스터국밥 보쌈정식.
-
근데 나이는 먹었는데 17
정신연령은 아직 고1정도인거 같음요.. 뭔가 성숙하지 않은 느낌 아직 입맛도 어린애입맛이고
-
리코리스 봐야하나 10
볼게 산더미처럼 쌓여간다 이제는 군대가기전 모든 시간을 투자해도 다 못볼만큼 애니가 쌓였다..
-
[고려대 25학번 오픈채팅방] 합격자를 위한 고려대 단톡방을 소개합니다. [클루x노크] 4
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
수능 공부하다가 까먹어버림뇨..
-
응단명할거야
-
수국김 듣고 혼자서 기출 풀어보려고 하는데 이때 시간보다는 다 맞는데 초점을 두고...
-
저격글마렵네 ㅋㅋ 11
근데 저격할 사람이 없다?!
-
그냥 갑자기 다 소진돼서 혼자가 편해짐
삼각함수 좋아요
노베킬러고트
저런 힘내세요
도형까진 할만한데
사인 코사인 그래프 지멋대로 움직여놓고 교점 찾는 문제가 참....
아 이거 저만 이런거 아니였네요 삼각방정식 그냥 패고시픔
이번엔 여기서 딱히 걸릴 만한 문제가 안 나왔으니 다행이지
수열의귀납적정의
크악노가다시러
수열 자체도 극혐인데 그 안에 더 싫은게 귀납수열 크아악
삼각함수 도형이요.. 안보이면 그 시험은 조진거고
보이면 그 시험 잘본거인 수준으로 버거움
도형은 의외로 행동강령 정리하면 잘보임
나중에 칼럼이나 써볼까
2등급따리가 칼럼써도되나
전 수열이 제일 재밌던데 ㅠㅠ
기하로 극복하시는건 어떰
악마;
솔직하게 확통 경우의 수가 킬러로 나오면 개빡일듯 ㅋㅋㅋㅋ 28 수능이 매우 기대되는 부분
내신때 확통하다가 토하는줄
28수능 이후라고 해도 경우의 수가 킬러로 나올 가능성은 거의 없다 생각해요
걍 지금 수능에서 선택과목 확통 고른 거랑 거의 같은 범위인데 그대로 수1수2로 변별할 듯
역사적으로 경우의 수, 순열, 조합이 수능 범위가 아니었던 때가 더 드문데 킬러급으로 나온 건 거의 없었죠...
지금 미적분 표본까지 변별해야하는데 수1수2만으로 한다고?
상황이 좀 다르죠
그냥 옛날 B형시절처럼 1컷 96~92 정도로 지금보다 1컷이 높은 수준으로 낼 가능성이 훨씬 높죠
옛날 가형/B형이 표본수준이 낮았던 것도 아니고, 수1/수2가 어려운 문제 못 내는 파트도 아니고 (사설들 보면 미적분 쉬운 회차도 1컷 77 찍고 있는 거 예사잖아요)
옛날에는 미기가 필수여서 굳이 확통으로 변별안한거 아닌가요 수1/수2를 지금보다 고이게 내면 그냥 노마더인데 ㅋㄱㅋㅋ..그렇다고 28체제에서 컷을 높이면 변별이 안되고
수2는 솔직히 이미 한계치까지 간 거 같긴 한데 ㅋㅋㅋ 수1은 아직 무궁무진하다 봅니다
확통, 그 중에서도 조합론 파트는 평가원이 일부러 선을 넘지 않는 거라고 생각해서요.. 예전 스티커 문제 때도 '사과'한 적도 있다 들었고
뭐 이론적으로야 KMO 조합론 문제 그대로 갖다 박아놔도 교육과정 부합하잖아요
가나형 킬러몰빵 시절 나형에서
그냥 확통 킬러 내는 게 아마 교수급 출제자 입장에서 더 편할텐데
그런 거 냅두고 170930(나) 같은 이상한 노가다 문제를 내는 걸 택한 이유는 있다 생각해요
어디까지나 개인 의견임을 전제하자면
올해 6평 확통 28번, 30번, 23학년도 확통 30번이나
17~21 확통 중에서 가장 어려웠던 문제들 정도가 난도 맥시멈이 아닐까 싶어요
그리고 위에도 말했지만 저는 전공통 체제로 가면 옛날처럼 1컷 96, 92 정도를 목표로 출제할 가능성이 훨씬 높다 생각해요
지금처럼 1컷 84 전후가 일반적이게 된 것 자체가 선택체제 도입 후이고,
22예비시행 문제를 보면 이는 선택체제 도입 후의 입시 변화를 고려한 의도적인 변화라고 생각해서요
미분기하 ㄷㄷ
선 안넘고도 충분히 어렵게 할 수 있는 영역이라 ㅋㄱㅋㅋㅋ..적어도 확실한건 지금까지 확통시험지 중에서는 제일 어려울 것 같습니다
그리고 이 짓을 다시 하진 않을 거 같긴 하지만
수1 범위에서는 유서가 깊은 끝판왕 변별문제를 낼 수 있죠
"격자점"
대학수학능력시험 수학 영역의 모든 응시자가 대수, 미적분I, 확률과통계 (2015 개정 교육과정 기준 수학1, 수학2, 확률과통계) 범위 내에서 문항을 해결하고 변별되어 원활한 대학 입시가 이루어지도록 하려면 확률과통계에서 난이도가 매우 높은 경우의 수 문항을 출제하는 것이 불가피하지 않을까 생각했는데, 그동안의 기출문제에 근거를 두고 다르게 예상하시는군요
미적분I의 경우 이미 다양한 사고 방식이 다루어졌다는 데 동의합니다. 대수에서는 고2 전국연합학력평가 시험지에서 확인할 수 있는, 그러나 아직 수능에서는 본격적으로 다루어지지 않은 사고 과정과 상황을 출제하면 28, 29, 30수능 정도에서는 충분한 변별력을 확보할 수 있지 않을까 조심스레 생각해 봅니다.
개인적으로 2022 개정 교육과정에 기반한 새 수능의 핵심은 '융합'에 있을 것이라고 생각합니다. 조건 A, B, C를 만족시키는 모든 삼차함수 중 한 가지를 골랐을 때 그것이 조건 D까지 만족시킬 확률을 구하라는 문제나, 구체적인 수치를 묻지 않고 선지 판단을 시키던 2015 개정 교육과정 물리학I처럼 정확한 접점의 x좌표를 구하도록 하지 않되 지수함수와 로그함수 같은 초월함수의 접선의 방정식을 슬쩍 다루게 한다거나...
25수능을 향해오며 점점 공통수학1, 공통수학2 (2015 개정 교육과정 수학(상), 수학(하)) 의 비중이 커져왔다고 느끼는데, 이 흐름을 따라간다면 두 2x2 행렬의 성분으로 서로 다른 여덟 개의 함수를 제시하고 두 행렬을 곱해 얻어진 행렬과 네 실수를 성분으로 하는 2x2 행렬이 같다는 조건을 주어 연립방정식의 해를 구하도록 하는 문항도 새 시험지에서 확인해 볼 수 있지 않을까, 물론 행렬식도 배우지 않고 가우스 소거법도 배우지 않기 때문에 이러한 방향으로 문항이 출제된다면 교육과정 선밟기를 첨예하게 해야할 것 같긴 합니다만
행렬을 굳이 고1수학에 넣고, 역행렬조차 가르치지 않는 이유는 행렬 재추가가 입시 부담에 영향을 주지 않게 하기 위해서입니다. 따라서 새 수능에 행렬으로, 그것도 선형대수와 줄타기를 하는 수준으로 어려운 문제가 나오는 것은 불가능하다고 생각합니다.
마찬가지로 다항함수의 미적분과 확률을 섞는 건... 누가 봐도 선을 넘는 출제행태라 불가능하다고 봅니다. 내신에서도 그런 짓은 웬만하면 안 해요. 설사 단발성으로 한 번 정도 출제되더라도 지속적일 수는 없을 거라 생각해요. X걱세 같은 데서도 가만 있지 않을 테고요.
무등비 삼도극
그거 아직도 나오나요
교과 내용이긴 하죠
모든 ~의 합
여러 개 구하기 싫은데
지로삼 미만 잡
09교과 시절 미2안하면 저 내용 첨 접해도 어려움
전 미적분.. 계속 틀리네요
특히 적분
제일 첫인상 흉악했던건 지로삼이요!
현대대수요
헉
가환환을 탁
가환환이 commutative ring인가
마자용
진짜 수학 한글 번역 기괴한 거 같음
옹골집합 못참는데..
옹골집합 이러는 거 보니까 너무 쓸데없이 김김계 본 수학과 같네
수리 복전하세요?
미적 전부요
수열 지로 접선계산
기트남어 수1 미적 도형은 개재밌음
공간도형
적분
수열
자연수의 덧셈과 뺄셈
이 모든 고통의 시발점
수학은 다 재밌는듯. 다만 문제가 어려울뿐...
치환적분 부분적분 너무싫음 계산실수 무조건 터져서 .. 계산 길어지면 뇌절
중적분
지수로그함수 그래프
이게 맛있는건데잉;;;;;;;;;!!!
정적분으로 정의된 함수/지수로그 쌩계산/공간도형
수열 극혐
ㅇㅈ
수열 못이김
수열