함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
성대,한양대에서는 학점4.0(gpa95정도)면 대충 상위 몇퍼되는거같아요? 누가...
-
건수 입결 예측 2
컨설턴트한테 작년 펑크였으니까 오히려 애들이 겁내서 올해 생각보다 안 높을 수 있지...
-
흠냐뇨이..
-
현역으로 연세대 원주캠 rc과 가는게 나음 아님 삼수해서 연세대 본캠 영문 당신의 선택은?
-
그램 15인치짜리 130정도에 사면 나쁘지않죠? 제 인생 첫 랩탑이라서 ㅈ나 설렘
-
입대가 곧이네요 4
종강도 했고, 오히려 수능 공부는 재미있는 걸 보니 대학 공부에 회의감을 많이...
-
할게 많네요 3
사진도 배워야하고 기타도 배워야하고 피아노도 다시 연습해야하고 텝스도 준비해야하고...
-
돌아가는 분위기 어떤가요 학교 가고싶은데..ㅠ
-
국어 김승리 풀커리 (선택:화작) + 이감으로 기출 문학/독서 (방학) 수학 이미지...
-
이과식으론 407.7 나오고 문과식으론 402.7 나오는데 경제 나옴? 안나오면...
-
이렇게 반가울수가
-
1년 더할까 걍 3
서울 살고 싶은데
-
ㄹㅇ
-
교재 방금 시켰는데 기대되네요
-
내가 많이 동안인가봄ㅎㅎㅎㅎㅎ
-
한 달 용돈 5만원인 사람입니다
-
내일까지만 열심히 힘내자(공부 열심히)..가 아니라 내일까지만 버티자(좀 마음...
-
과탐>사탐은 경제같은거 아니면 8월에 해도 가능 찍는데 화학>물리 생2>물리...
-
나도 롤이나 해볼까 10
근데 롤하면 부모님이 위험해질수도 있다는게 사실인가요?
-
보이스피싱이거든
-
레드불 후기 ON 혼자 통나무 든 후기 ON Youtube :...
-
질문받는다 7
ㅇㅇ
-
다같이 일할때는 0
어떻게든 손해 안 보려고 하는 태도를 굳이 내비치진 맙시다 진짜 짜침..
-
ㅈㄱㄴ 한번 인강 듣고 문제집 풀어본 후 결정함?
-
혹시 절차가 어떻게 되는지가 궁금 직접 가서 방문 상담하는건 알고 있는데 가서 대충...
-
낙지표본 0
낙지에 의대 표본 들어올 만큼 들어왔을까? 슬슬 액셀 작성하면 의미있을라남
-
올해&작년 6, 9평 해설강의 들으면서 모든 문항이 제 기준으로 정말 이해 잘 가게...
-
내신도 끝났겠다 정시 준비해보려고 쎈이랑 시발점도 좀 사서 풀고 하고있어요 그런데...
-
티원 의문의 거지구단행 현준구케꼬톰마 의문의 호구잡힌놈들행..
-
시험을 치고나서 공부 제대로 할 다짐을 하기 때문에...
-
수능 안정 1등급 분들의 생각 방식 (Ft. 2025 수능 자료) 0
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
통변은 둘째치고 불변이었어야 대학을 가는건데 망했네요 ㅠㅠ
-
설치 vs 메쟈의 14
.
-
간바레 12
힘낼줄 아는 것 밖에 업서
-
출산율 마지막 반등이 저때인 걸로 아는데
-
이를 엇듸하면 좋을고...
-
으앙악ㄱㄱ크악 6
나도 연고대를 가고싶구나... 서성한을 가고싶구나..
-
이런 사례가 있는지 궁금...
-
좀 그럼? 최종컷 안 움직이는 건 또 첨이네
-
김승리 ㄱㅊ앗는데 찍먹만 해봐서잘모름
-
난말했다
-
검사가 꿈인 건 맞는데 한의사의 꿀통이 너무 부럽네요... 확통런 칠 생각인데...
-
이게 낚시글임요 ㅋㅋ
-
이번에 멈출까 6
흠.
-
칼럼 26지원 1
https://orbi.kr/00070662826
-
무물보 6
공하싫
-
물1화1 만표 70초중반은 안 나오겠죠
-
방학때 기출을 진짜 ㅇㅋ 수능때까지 다신 안볼게(실제론 다시 봐야하긴 함) 내가...
-
ㅈ됨.
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
![](https://s3.orbi.kr/data/emoticons/rabong/011.png)
워낙 좋아하다보니 그런 것 같습니다 :)문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
좋은 문제 감사합니다아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234