함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대갤에서 본거 옯에서 또보고 옯에서 본거 시대갤에서 또보고 ㅋㅋㅋㅋㅋㅋ 심심하면...
-
권구승 미적 4
예비고3입니다 시대 서바정규 시즌1부터 미적반 듣는게 좋을까요? 아니면...
-
안녕하세요! 이번에 학교에서 진행하는 프로젝트 관련 우정이나 추억관련 인식에 관한...
-
냥대vs서강대 8
생명과학쪽 희망합니다 냥대 생명공 4칸 냥대 생명과학 5칸 서강대 생명과학...
-
노트북 잘알님들아 22
대학생 노트북 추천 좀 해주세요
-
와 진짜 한문제도 못풀겠다
-
멧돼지 출몰 ㅆㅂ 12
이래서 산에 살면 위험한ㄷㄷ 겨울이라 내려오네 다들조심
-
1ㄷ1 퍼스트블러드를 누가 갖고 가는지에 따라 여론 바로 나타날듯 설레네
-
이정우의 수학강의 채널 가보셈 ㅋㅋ 애가 타락해서 디시충이 됐네
-
갑자기 진학사 싹다 분석중 뜨네요
-
월간지 + 기출 가능?
-
한방에 벌점 50점이라니 앞으로 저런거쓰면 안될듯
-
01년생인데 대성 강사라니 미쳤다 사람 맞나
-
님들이라면 어디써요? 강대 의평원 불인증 뭐시기땜에 좀 붙어도 불안할꺼같은데 어떻하는게좋죠?
-
시대 과탐 단과 0
컨텐츠 뭐주나요? ex) 엣지 플로우 등등...
-
롤드컵에서 4자동률이 있었다는 사실을 알고 계신가요…? 2
그때 진짜 밤새면서 봤었는뎅
-
개쫄린다
-
울고 나왔는데 광탈이겠죠 그냥..? 수치풀…
-
메인글 생존 2
벌점 50점 ㅋㅋㅋㅋㅋ
-
군인이라 pdf 제본하기 쉽지 않은데
-
면접 끝났네요 0
내년엔 쌍윤을 해볼까…
-
개인정보 제외한 모든것을 받습니다
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
방학 계획 2
재무/원가/세무회계 찢어버리기... 방학 때도 열심히 공부하시길 바랍니다!
-
10년을 나쁜눈으로 살았어...
-
고자전 고경 1
고자전이 공거리 필수로 해야하는걸로 아는데 고경 가면 공거리는 선택 못하는건가요??
-
https://i.orbi.kr/0001334997/ ㅠㅠ
-
올해는 제발 쫌 붙어라
-
절에 가서 매일 간절하게 비는 방법 밖에 없는듯 ㅋㅋㅋ 웃자고 하는 소리가 아니라...
-
ㅈㄱㄴ
-
하제맑음컨설팅 정시상담 안내 오르비 입시원 하제맑음 예약 링크:...
-
이거외이럼 2
시립댄데 뭐가바뀌는ㄱ거지
-
재수 성공 기준 2
평백 몇 이상 올라야 성공했다 보는지요
-
1. 일단 휴르비 한다.
-
일단 올해 처음 모집하는거에서 나름 불안요소인게 1. 서강대식 인재가 이제 나다군...
-
의논 노예비면 2
추합 가능성 없죠? 어차피 안될 거 확인하러 들어가기 귀찮아서…
-
이번에 이준석 판결 7700만원 배상하라고 나왔네 진짜 변호사들 돈 버는거 보소 ㅋㅋㅋ
-
인하대 합격생을 위한 노크선배 꿀팁 [인하대25][등록금뽕뽑기] 0
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
아니 너무추워 4
손이 곱아서 글이 잘 안써지네
-
와...
-
가끔씩 달력이 오류나서 인터넷도 속임 12월16일 수요일 뭐지다노
-
후
-
여캐 투척 6
현재 최애캐
-
직원이 살펴보고 어 이상하다 하고 컷 수정하기도 함??
-
bdd라고 생각해요 ogn에서 라디오 틀듯이 틀어놓구 꾸벅꾸벅 졸다가도 가끔씩...
-
메인글머고 3
-
최저 열심히 준비했고 노력에 미련 없어서 현역으로 가려고 했는데 최저 못 맞춰서...
-
맞지?
-
셤보러 가는 중… 내가 지금 뭐하는거지
-
다음 업데이트가 왜 16일임 ㅋㅋ
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234