미적분 자작문제(1200덕)
첫 정답자 1200덕 드리겠습니다!
0 XDK (+10)
-
10
-
바이바이
-
너무 낙관적이야
-
당장 티비에 머그샷 공개된 놈하고 알고 지낸 사람들 반응도 반응인데 만일 나라도...
-
솔직히 개후회됨 4
내가 정외 행정이라도 썼으면 지금 이런 고민 안 해도 되는데 더 생각하면 살자...
-
사실 대학 가서 오르비 하기부터 이해가 잘 안가기는함 근데 대학 가서 오르비하는거면...
-
다양한 분야의 인재를 끌어모은다는 취지를 살린다는 차원에서 여러 학과들 기존 모집...
-
안녕하세요 저는 부산해사고라는 마이스터고에서 항해과 졸업하고 지금은 승선중인...
-
조금의 가능성은 있는걸까요?? 근데 1칸으로 쓴곳이었는데 예비 초반대인게 말이...
-
물론 백분위도 중요하지만 그냥 대강 말해줘 24111 맞으면 어디가? 농어촌도 가능함
-
아이패드 굿노트 쓸려는데 펜이 없어서 살만한 가치가 있을까여
-
ㅇㅈ 0
대로로
-
폭은 거의 없음뇨? 그럼 진학사가 ㄹㅈㄷ병신짓한건데
-
문과 빵 ㅈㄴ 나네 ㄷㄷㄷ
-
공시판으로 들어간다
-
3일 안 씻기도 해보고 했는데 물리 성적은 오르지 않았어요
-
자아분열 미쳣다 8
반수하고 싶은데 반수하기 싫음 아ㅋㅋ
-
쎈 돌리고 있는데 실력을 늘려주고 있다는 생각이 안듦
-
고대 중문 점공 1
며칠째 이상태인데 나머지는 보통 스나인가요? 아니면 최초합도 좀 섞였으려나요 35명...
-
7호선에서 내리다가 지갑 떨어뜨렸는데 스크린도어랑 문 사이 틈에 빠질뻔함 한 1cm...
-
내신 5등급제가 되면 내신이 갖는 힘이 약해져서 수시의 교과전형을 학종전형이 장악할...
-
방학때 계절학기 교환학생으로 미국이나 난양이 공대 갈 수 있다면 가는게 좋나요?...
-
안녕하세요 인서울 하위권 4년제 다니다 휴학하고 작년 9월에 입대해서 군생활중인...
-
1일 1식 + 1일 1 헬스장 유산소 빡세게 + 1일 물 2리터로 붓기 쫙 빼고...
-
근거는없음... 그냥 조발좀해줘
-
제발 조발해줘 0
점공으로 희망고문 그만당하고싶어....
-
흐
-
특별전형포함 조발좀
-
수1인데 수2하는 기분임.. 처음 풀 때 집합개념 헷갈려서 더 어렵게 느껴지는 것도 있는듯
-
아 일단 6월까진 고민 좀 해봐야겠음
-
물 좀 다오
-
한양대중간공에서 고대 자연으로 옮길거같은데 좋은 선택일까요? 부모님은 공대가 더...
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 2
논리싫증주의자는 관심이 없다
-
성대 추합 5
성대 다군 수험번호,성명이 없다는데 예비번호도 안주면 추합도 기대못하는거임?
-
제도의 취지자체는 로스쿨처럼 각 분야에서 인재들을 끌어모으겠다, 의사 카르텔도...
-
수능 원서 사진으로 만들어도 되나요?
-
다음 해외여행은 6
여자친구랑 가고싶구나
-
“신세 많이 졌습니다”, 시청자 울린 이순재…KBS 역대 최고령 ‘대상’ 4
https://n.news.naver.com/mnews/article/023/0003...
-
김승리 현대시는 시는 대충읽고(대충 감정,정서만 파악) 문제에서 개깐깐하게 보자...
-
아오... 하고 오답 회귀하면 되는데 다시 풀 때 맞았던 문제를 틀려버리니까 정신...
-
평균 6등급인데 화작 언매 중 뭐 선택하는게 좋아보임? 원래는 화작 선택하고...
-
기계공학과 2
기계공학과나오면 보통 무슨일하나요?
-
에피는 고능해 7
볼 때마다 신기함뇨
-
지상 최고의 꿀과목 13
화1
-
석준쌤 방식 적용해서 헤겔 지문 읽고 보기문제 풀었더니 이해 성공함
-
물2 수학 논술 준비하는 학생 과외 필요하시면 쪽지 주세요~
-
사1과1 약대 2
생명 사문으로 볼려고 하는데 약대 지원할 때 이득이 있나요?? 사2하는 게 나을까요
-
쎈발점 0
공통 전부다 시발점 듣긴 좀 빡센데,, 쎈 풀고 막힌다 하는 부분만 들을까요?
이건 5다
ㅈ..정답..!
이게 뭐야
와 이걸 맞혀?
발문이 어디서 본거같은데
3월 가형 30번이었나
2018 9평?
f(x) = t√x + x(lnx - 2)
f'(x) = t/(2√x) + lnx - 1
|f(k) - g(k)| = g(k), f(k) = 0 or 2g(k)
lim(x→0+) f(x) = 0 이고 f(x)가
구간 (0, ∞)에서 증가하면서
y = |f(x) - g(x)|가 x = k에서 최소이므로
f(k) = 2g(k), f'(k) = g'(k),
g'(k) ≥ f(k)/k → kf'(k) ≥ f(k)
여기서 k = h(t)이면 kf'(k) = f(k)이므로
t√k/2 + klnk - k = t√k + klnk - 2k,
t²k/4 = k², k = h(t) = t²/4
→ h'(t) = t/2, h'(10) = 5
정확합니다!
저 g'(k)≥f(k)/k 는 어떻게 나온건가유..?
아니 제발 해설 좀 궁금해서 일상생활이 불가능해요....
다른 건 알겠는데 저 부등식이 평균변화율로 관계식 만든 건가요??
그래프 직접 그려보니, x=k에서 최소이려면, f(x)의 x=k에서의 접선이 0,0 을 지나야 하는 게 k의 최소네요...
그래프만 잘 그렸다면 바로 보였을 텐데 아볼 위볼 파악을 잘 해야 했네요...