(짧은 칼럼) 1/x을 적분하면 무조건 lnlxl+C라 할 수 없는 이유
lnlx+3l의 부정적분도 비슷한 예시가 될 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
11명 뽑는데 13등인데 앞에 표본 분석 해서 빠질 사람 빼고 제가 11명 안에...
-
호에엥
-
믿어도 되는거임..??ㅠㅠ 믿고싶다ㅏㅏㅏㅏ 394.6인데 설지구고 가고싶가ㅏㅏㅏ
-
무물함 7
없으면 자러 가야지
-
몇점이 올라야 빵 날 가능성이 생기는 거니 ㅠㅠ
-
순서대로임뇨
-
접수 완료. 2
이제 기다리는 것만...
-
모집요강 읽어보면 가능하다는 말 같긴한데... 혹시 잘 아시는 분 계신가요? 학교에...
-
시누 레전드 릴스 발생 15
https://www.instagram.com/reel/C-A5xa7PnCX/?igs...
-
물론 6월부턴 열품타 안 씀뇨 그렇다고 공부시간이 늘지는 않았고..
-
수의대 오지마세요 23
애견시장 커져도 동물병원매출은 그대로인 농대출신들이 이과 최상위권 출신들을...
-
에매 켠왕 성공 6
원서 접수하러가보자
-
절대 쓰면 안된다는걸 알아도 너무 매력적인데요
-
이 입시판에 더 남아있질못하겠다 677이나 577을 써서라도 탈출해야겠어요...
-
꿈도 열정도 다 주고 싶어
-
가나 둘다 떨궈져서 중대행이면 어쩌나 싶고
-
부산경북 라인 정원 6명인 극소수과이고 실제지원자 37명중 1등입니다. 3등까지...
-
여긴 될 거 같은데
-
용감한 현역
-
남들 대학고민할때 난 강사고민중
-
게으르고 나태해 4
난 트래시대학생인가봐..
-
그냥 좀만 잘가 1
3시간만 잘가..
-
스나로 써봐도 될까요……… 5명 뽑아요 컨설팅에서는 지를거면 르꼬르외식경영 쓰라던데 얜 2칸이라
-
대학을 잃고 남성성을 얻는다
-
2월부터하자 걍
-
4합부턴 ㅋㅋ..
-
수학 100 못받은게 약간 계속 머리에 맴돎요
-
그건 사실인거야
-
중앙대 자퇴 2
중앙대인데 자퇴사류 월욜에 냈는데 아직까지 처리가 안된거 같아요... 개인사정으로...
-
도파 곧 말출임 실화냐?
-
아 상지대 한의예과 포기하고 상지대 경영 쓰면 무조건 붙는건데 ㅠㅠㅠㅠㅠ
-
쓰면 붙는 낮과 포기하고 쓰는건 진짜 심리적 압박감이 미쳐요 진짜
-
진짜 미칠것같아
-
완전 최종인가요?
-
오늘은 이거 좀 주기적으로 올림
-
배고푸다 4
그치
-
5칸 버리고 그냥 3칸 쓰려고 함... 엄마아빠죄송합니다
-
칸수 왜 오름? 0
성적표나오고 1주까지 6칸최초합>하루 후 5칸최초>5일뒤 4칸불합>2일전3칸>어제...
-
지금이 더 떨리네 ㅋㅋ 애초에 수능은 걍 긴장 1도 안했는데
-
최종업뎃이 이러네여 야수의 심장으로 질르면 ㅈ대갯죠?
-
뭐 별로다 괜찮다 라는 의견이 있어서
-
칼기상 6
아얏
-
연대 한양대 이번에 내신 반영한다고 들었는데 3학년 1학기까지인가요...
-
뭐죠….. 쓰기에는 1칸이였어서 너무 쫄리는데
-
정상화가 일찍됐스 이또한 낙지의 은혜겠지요
-
5 -9칸인 사과대보다 4칸인 경영경제가 더 안정인거같은기분임 왜 칸수를...
-
업뎃된건가요 7
칸수가 또바뀌엇네
-
올만에 무물보 8
-
그래야 안 쓰지
-
대충 살자 12
고대식 680 들고 미디어 1순위 박는 이새끼처럼..
C1이랑 C2랑 안 같아도 되는 건가요??
네네 다를 수 있습니다.
한 함수 적분할 때 구간마다 적분상수가 다를수도 있는 거니까 그런 거조?
근데 개념이나 해설강의들보면 항상 ln절댓값+C1 하던데 오개념인가요?
"한 함수를 적분할 때 구간마다 적분상수가 다를 수도 있다"라고 생각하시면
좀 위험할 수 있습니다.
기본적으로 피적분 함수가 '연속'일 경우
적분이 된 함수는 자동적으로 미분가능하게 되어
적분 상수가 동일해집니다. (cf. 도함수 연속->원함수 미분 가능성 보장)
이 점을 염두해주시고
'피적분 함수의 정의역이 불연속으로 끊겨 있는 상태에서 (ex. 1/x)
적분할 때 구간에 따라 적분상수가 다를수도 있다.'
이렇게 생각하시는게 좋을 것 같습니다.
말씀해주신 개념/해설강의 같은 경우에는
앞뒤 맥락과 설명하는 상황을 추가적으로 파악해야하기에
확답을 완전하게 드리기는 어려울 것 같습니다.
현우진 선생님 킬링캠프 모의고사 28번에 나온 소재네요ㅎㅎ
저도 고려안하고 틀렸던…
아 그런가요? 킬링캠프에 이 소재가 이미 나왔는 줄은 몰랐네요ㅋㅋㅋ
이거 소재로 한 문제 사설에서 봤어요
그렇군요! 알려주셔서 감사합니다! ㅎㅎ
고등학교 수학에서 불연속함수 적분 안시키지 않나요??
가우스 함수같은 불연속함수 자체를 적분한다는 의미가 아니라,(당연히 고등학교 교육과정에서 불연속함수의 적분은 다루지 않습니다.) 연속함수를 적분할 때 정의역이 끊겨있어 구간별로 적분해야되는 상황(적분 상수가 달라질 수 있음)을 말씀드린 거에요!
예를 들어 점근선이 존재해서 한 지점을 기준으로 정의역이 끊겨있는 상황이라고 합시다. 다만, 그 지점을 제외하고 나머지 부분은 다 연속이고요(1/x의 경우 x=0을 경계로 정의역이 끊겨있음)
이 경우 함수의 구간을 나누어 적분하면(x>0,x<0) 구간별로 적분 상수가 달라질 수 있다라는 의미입니다!
아하! 친절한 설명 감사드립니당><
넵! ㅎㅎ