23학년도 수능 기하 30번 공간벡터로 풀기
삼각형 PQR의 넓이와, 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 알면 됩니다.
무슨 이유에서인지 점의 레이블을 걸어주지 않았습니다;;
당황스러우니 먼저 정하죠.(윗꼭짓점-밑면 삼각형 반시계방향 순으로 쓰는 것이 보통 일반적입니다.)
먼저 삼각형 PQR의 넓이를 먼저 구하겠습니다.
정사면체 ABCD와 정사면체 APQR는 닮음입니다.
따라서 삼각형 BCD와 삼각형 PQR은 닮음입니다.
(참고로 입체도형의 닮음비와 평면도형의 닮음비는 같습니다.)
그러므로 삼각형 BCD의 넓이와 두 정사면체 사이의 닮음비를 안다면 '넓이비=닮음비 제곱'을 이용하여 삼각형 PQR의 넓이를 구할 수 있습니다.
정삼각형의 경우 외심이 곧 무게중심입니다.
그리고 이 외심은 문제에서 주어진대로 구 S의 중심이므로 점 P와 점 O를 이어준 길이는 곧 반지름이 됩니다.
따라서 이등변 삼각형의 이미지가 나오게 되고 우리는 밑변에 수선을 내려 직각삼각형을 작도할 수 있습니다.
그런 다음 반지름에 정사면체에서 직선과 밑면이 이루는 각의 코사인을 곱하여 윗 그림과 같이 결국 AP의 길이를 알 수 있게 됩니다. 따라서 두 정사면체의 닮음비는 AP:AB=1:3입니다. 이것이 곧 삼각형 PQR과 삼각형 BCD의 닮음비이므로 둘의 넓이비는 1:9가 됩니다. 따라서 삼각형 BCD의 넓이를 9로 나눠준 값이 삼각형 PQR의 넓이가 되겠네요^^
구해주면(윗 그림 참고)
이제 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 구합시다.
그런데 평면 α는 구에 접하는 평면이므로 법선이 확실하게 보장되어있습니다. 따라서 이면각을 교선을 찾아 그대로 보기 보다는 법선과 법선이 이루는 각으로 봐도 상관이 없습니다. 즉 두 평면에 대한 법선벡터를 성분화할수만 있다면 내적을 통해 cosθ를 쉽게 구할 수 있는 것이죠.
성분과 좌표는 동일한 것이 아니지만 정사면체에서는 다음과 같이 좌표를 잡는것이 가능합니다.
좌표는 분수가 안나오도록 세팅하는 것이 관건입니다.(굳이 구의 반지름이 6이라는 것에 집착할 필요 없어요. 어차피 윗꼭짓점을 닮음의 중심으로 하여 다 닮음인 공간도형이므로 법선벡터끼리는 평행합니다.)
아무래도 삼등분점 상황, 무게중심을 구할때 3으로 나누는 것, 최소 단위의 숫자를 사용할 것을 모두 감안하게 되면 단위값을 3으로 설정하는 것이 좋습니다.
이제 각 평면에 대한 법선벡터를 구해 볼게요.
먼저 평면 PQR에 대한 법선벡터는 그냥 (1,1,1)로 잡으시면 됩니다. 어차피 윗꼭짓점을 닮음의 중심으로 하는 모든 정사면체의 법선벡터는 가장 간단하게 표현할시 (1,1,1)이 될 수 밖에 없습니다.
이제 평면 α에 대한 법선벡터를 구해봅니다. 구에 접하는 평면이므로 그 법선벡터를 알려면 구의 중심과 접점에 대한 정보가 필요합니다. 따라서 구의 중심은 (2,2,2), 접점은 (1,1,0)이므로 빼주면 법벡은 (1,1,2)
내적을 통해 cosθ를 구해주면
따라서 정사영은
제곱해주면 답은 24.
봐주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내신 높은데(1.3) 3합6으로 둘어가는게 낫나요.....ㅠㅠ
-
https://www.pixiv.net/en/artworks/125455424 은근 열심히 골랐는데
-
롤체 에매 켠왕 6
6연순방중 근데 3등해도 10점줘서 점수가 너무짜요...
-
옛날엔 글마다 댓 달아주셨는데
-
시대 재종 질문 5
작년에 모든 전형이 선착순이엇나요?
-
수학빼고 선택과목 다 바꿈
-
노트북 전원 켜보자
-
딱히 적성을 모르겠는데 14
공대가는게 나음 상경가는게 나음? 경희대 공대 vs 경희대 상경 고민되는게 전자는...
-
열심히 해야지요 개인적으로는 실망이 큰 한 해였고 올해는 좀 더 놀 건 놀면서 할...
-
잘못된 생각이라고 봄 바꾼다는 생각부터 어쩌면 내가 그 사람보다 우월하단 인식에서...
-
그냥 오르비 하면서 과제할래 나 진짜 요즘 너무 적적해..
-
방굽습니다 4
-
제발 현정훈 0
그만오세요 이러다가 수능 볼 때까지 안 씻어야 1등급 받을 수 있을 듯요
-
오노추 2
진 - lost time memory 틀딱 노래를 불러주시는 분들껜 늘 감사할 따름이에요….
-
졸린데 걍 잘까 12
내일 9시에 일어나서 할까 걍..
-
새벽오르비 리젠은 내가 다채우네
-
ㅜㅡㅜ 어떻게생각하심
-
미필삼수가 할 수 있는 최선책
-
내 여친임 4
근육미녀 여캐 ㅈㄴ 좋아
-
대형과긴한데… 최근에 컷이 내려와서 잘 모르겠네요. 적정은 되나요?
-
그리고 새롭게 태어난 과제 머신만이 존재할 것.
-
절대 사람을 고쳐쓰려하지마 조언해주지마 설득하려 하지마 라는 생각임
-
연의 최저 반수 4
한경중 라인 의대 합격잔데 연의 최저를 못 맞춰서 떨어짐 (영어 3등급이내,...
-
안주무시는분들 44
뭐하시나요
-
06년생이고 가산점 꽉채웠습니다 계산해보니 총 98점 나오는데 6,7월...
-
1. 아니 확통 하라고 (8월) ?? : 어차피 수학 글러먹었는데.. 찍는다...
-
왜 이렇게 많이 차이나는거지..?
-
개재밋게 할 수 있는데 그러면
-
좋앗어 4
수학1 이녀석 이제 거의 다 파악햇다 별거 없군 ㅋ
-
수학1 4
수학2 미적분
-
스나는 이게 2
가 나 다 어디에 쓰는거임?
-
내일 마감직전경쟁률까지만 기다려야겟다
-
근데 간지는 기하임 15
기하라는 과목이 뭔가 그냥 고능해
-
고대 문과랑 성대 자전으로 가서 전전이나 솦 가는 것 중에 뭐가 나을까요? 고대...
-
어디가 맞음?
-
어 느새 부터 수학은 안멋져
-
문제 풀어도 되겟는걸
-
주관식 4점짜리 문제에서 그래도 다 풀고 나온 답에 어느정도 확신을 가질수가 있음
-
추천받음
-
ㅁㅌㅊ
-
내란 불확실성 해소는 미적평 하하하하
-
1월 동안 독서수업만 진행되는데요 그동안 문학은 어떻게 공부하셨나요?? 오늘...
-
지금 일어났네 11
하이고야 다시 잘게요 굿밤
-
감사합니다
-
왜안함?
-
소수과 0
부산 경북라인 꼬리과 10명 뽑고 지금 제가 3등인데(8칸)...이거 안정으로 볼...
-
ㅉㅉ
-
그러니까 붙여줘요……
고능아
감사합니당
않이..
저는그냥 선 찍찍 긋고 풀래요
기하는 알아도 기벡은 잘 몰루..
사실 제가 푼 풀이는 굉장히 돌아간 풀이에여. 마지막처리 과정에서 길이 다 알 수 있으니 그냥 코사인 법칙 쓰면 됨 ㅋㅋ
그냥 정사면체 좌표 잡는거 적용해서 풀려고 억지로 공간벡터를 사용한 감이 있죠.