쎈 공수1 문제 오류 인가요? 이의제기 결과 이상 없음
정리) 저는 •••이 저 다항식의 모든 항에 규칙이 적용이 된다는것을 의미한다고 생각했어요. [0 × (X의 0제곱) + 1 × (X의 1제곱) + 2 × (X의 2제곱) + 3 × (X의 3제곱).....] 을 의도 한것 같다고 생각했어요 그렇지만 0 × (X의 0제곱)은 0 × 1이여서 0이 나왔기에 n × (X의 n제곱) 이라는 항의 n 값이 중복없이 0 부터 100까지의 정수 101개의 덧셈한 값의 제곱의 구조를 가진 다항식과 다른 구조를 가진 다항식이 나와요. 만약에 위 다항식에 규칙이 없다면 3 × (X의 3제곱) 이 나온다는 보장이 없다고 생각 해요. 물론 [x, 2(x의 제곱), 100(x의 100제곱)] 을 보고 유추할수는 있다고 생각하지만요, 같은 규칙이 모든 항에 적용돼야 한다고 생각했어요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연?애 7
연애할 때의 심리적 안정감도 좋지만 생각보다 감정소모가 너무 심하고 차라리 썸 탈...
-
유튜버 한주 아빠한테 보여주면서 내가 이렇게 여장하면 어쩔 거냐고 물으니 호적에서...
-
24수능 연고공라인이셨던 분들 올해 어디 가시나요? 0
24수능 연고공 라인이셨던 분들 올해 어디 가실 예정이신가여..?
-
근데 이거 왤케 어려운 느낌이지
-
이거 수능중독 초기증세인가요
-
흐음ㅁ 궁금ㅋㅋ쓸려다가 포기한 곳들이라
-
이번에 준비 못했음 쓴건 연고서성한+부산메디컬 인데 부산 빼고 다 최저 맞춤 내년에...
-
서성한 / 중앙대 정도면 전체 지원자의 80퍼 이상 차나요?
-
연애썰 15
이때 엄마왈 진짜로 걱정해서 여친생기나 안생기나 지켜보다가 중딩때 여친 생긴거보고...
-
가군 전남치 전북치 경상의 나군 단국치 다군 동국의 이제 다 끝났으니 결과나 빨리 나오면 좋겠네요
-
내가 속해 있으니까 이게 점점 진심모드가돼감;;
-
문과 거의자전이라는데 소속감 없나요
-
현역이고 이왕 살거면 지금 할인할때 사는게 좋을거같은데 지금 사는게 좋을까요?
-
재수 때는 수능 전에도 불안, 칸 수 변동도 불안, 지원도 불안, 점공도불안, 결과...
-
진학사 마지막 업데이트때는 2.5점 앞선 최초합 끝자락 6칸이였는데 13명 정도 더...
-
아 ㅅㅂ 내 미래구나................
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
닉넴이 기억이 안나여...꽤나 고닉이셨던거같은디 2023년도 겨울에 오르비 눈팅만...
-
억 장와르 르 5
멘 션 오 마이갓 비상사 태 큰일났다 좆됐다
-
어?
-
감사합니다.
-
1.문돌이면 수학에 약할것. 경제가기 빡셈 2. 보통 학점따기가 경영이 쉬움 3....
-
반지름 1인 원의 넓이는 2차원 평면에서 x^2+y^2<=1로 표현되는 영역의...
-
ㄱㄱㄱ
-
맨날 보이던 고닉들만 보이고
-
작년 이맘때쯤엔 반수해야되나 편입해야되나 이러고 있었는데 올해는 그냥 정시 결과와...
-
자토이치 2003년개봉작 보면 나한테 고마워할 예정
-
기하러라서;; ㅠㅠ
-
그리고 사라지는 글들 올해는 억울한 벌점 없애주고 하던거 생각하면 오르비 관리자분들...
-
2026년 대입에 논술 전형 확대가 될 것 입니다. 그리고 점차 모든 대학과 나아가...
-
도와주세요!!.. 13
https://youtube.com/@retryhanni?si=Ae179NVc2DVK...
-
대성 환급 0
환급 조건 기한 1/3일이라는 거 모고채점+모의지원만 하면 되나여?? 서류 제출은...
-
경제>경영 5
난 경제훌리니까 반박은 받지않음
-
한양 폭 1
냥대 교육학 9명뽑는데 폭인지 82명이 지원함요ㅠㅠㅠ 모의지원땐 30명대밖에 없었고...
-
논술 공부 0
논술 공부 관련해서 궁금한 점 질문 받습니다. 그 동안 쓴 글과 칼럼 보려면 밑에서...
-
생기부 붕석해주고 3-1에 어떤거 하면 좋은지 6장 대학라인 잡아주고 뭐 이런거 한다는데
-
연애 한 번은 하겠네
-
점수공개하세욧!! 난 성대식 681.34점임
-
화2 인강 3
고석용쌤 괜찮나요? 손은정쌤은 집중이 잘 안되서..
-
성비 지금 전자기계급이었다는데
-
때문에 ㄹㅇ로 등급컷이 올라갈 수 있는 거죠? 저런 사람들이 얼마 정도 돼야하지
-
연대가 설대를 막 뭐시기 한다 그런 일 업잔음 고대가 연대를 넘본다? 이런 일은...
-
올해도그랫음 시발 공대말곤 답이없는데 공대가존나싫음
-
건대: 훌리짓하게 냅둬라 or 오르비 수만휘 왜하냐 외대: 여러분 수만휘와 오르비로...
-
표본상승 ㄷㄱㅈ
-
?? 살이 빠질정도로 유의미 하진 않겠지?
-
애니프사들 돌격!!
무슨 말씀하시는진 모르겠는데 문제엔 오류가 없어요
어떤 부분이 이해가 안되시는지 물어봐도 되나요?
n × (X의 n제곱)을 의도한것 같은데 그러면 처음에 1이 아닌 0이 되야해서요
X의 0 제곱은 1 인데 그 앞에 제곱을 하는 값을 계수로 설정하는거 아니에요?
n*x^(n-1) 이에요
아 무시
왜삭제가안되냐
ㅋㅋㅋ 넵!
2 × (X의 2-1)
님이 쓴거같은 일반항같은걸 의도한게아닌듯
그냥 다항식으로 생각하세요
그러면 3 × (X의 3제곱)을 의도할 규칙이 안나와요
1은 제외하고 x부터 규칙이 있다고 생각해도 되잖아요, 뒤에 100x^100 있으니
그냥 출제자 의도 맞춰서 그렇게 풀어서 답은 맞췄는데 기분이 나빠서 글 써본거에요 ㅋㅋ 새해 복 많이 받으십쇼
규칙이아니라 그냥 필요한 항만 몇개 계산하는문제에요
해설지에서도 x^3항까지만 계산해도 된다 라고 하는거처럼
그냥 출제자 의도 맞춰서 답은 맞췄는데 기분이 나빠서 글 써본거에요 ㅋㅋ 새해 복 많이 받으십쇼
그렇게 풀기는 했슴다
어... 죄송해요 저는 문제를 이렇게 출제하면 안된다고 생각해서... 내신 시험이 이렇게 나오면 재시험 보겠죠..?
아 자러가신다 했군요! 좋은 밤 보내세요!!!
문제오류없음
혹시 왜 일까요?
본인의 설명을 납득시키는게 우선인듯 0곱하기 x의 0제곱은 0이 맞음 근데 문제에서 애초에 0이 등장할 요소가 없음 본인의 개념에서 어디서 누수가 발생한것으로 보임
잠시만요
저도 0이 나와서는 안된다고 생각해요!
ㅇㅎ 대충 무슨말인지 느낌 잡았다
1쓰는게 문제 의도임 애초에
저렇게 출제하는게 왜 문제가 된다고 생각한지 이해가 전혀안됨
그렇지만 1 또한 그 규칙에 맞아야한다고 생각합니다.
그렇지만 3 × (X의 3제곱)을 단순히 x, 2(X의 제곱), 100(X의 100제곱)을 보고 유추할수는 있다고 생각을 해요
아니 애초에 규칙적으로 주는게 의도가 아니라니까 ㅋㄱㄲㅋ 그리고 1대신 0이 들어가면 답은 달라지지 본인 마음에 안든다고 문제가 틀린게 아님
제가 옳다고 우기고 있다고 느끼셨다몈 죄송해요
노가다로 확인 ㄱㄱ
님생각: 다른 항의 규칙성을 보아하니 상수항이 1이 아닌 0이 더 적절하다
제생각: 그러면 예쁘겠지, 그런데 문제가 예쁘지 않다고 오류임?
ㄹㅇㅋㅋ
저는 이것을 오류라고 우기고 싶지 않아요...
제목을 바꾸세요
물음표를 적었기에 그 부분에서 기분이 나쁘실줄은 몰랐습니다. 문제 오류? 에서 문제 오류 인가요? 로 수정했습니다
그렇게 느끼셨다면 죄송합니다
그러면 3(X의 3제곱)이 나올수밖에 없으면서 1도 규칙에 해당하지 않아도 된다고 생각하지 않아서 글 써본거에요
만약에 위 다항식에 규칙이 없다면 3(X의 3제곱) 이 나온다는 보장이 없다고 생각을 해요. 물론 유추할수는 있다고 생각하지만요
우기고 있으신게 맞긴한데 워낙 어리시니까 뭐 ㅋㅋㅋ 이해합니다 귀엽습니다
규칙적으로 딱 떨어지면 예쁘기야 하겠죠
그리고 그런 생각을 갖는 것 자체는 나쁘지 않다고 생각합니다..수학에 대한 흥미를 갖게해주고 규칙을 찾을려고 노력하는 것이 실력에 향상을 가져다줄 때도 있습니다
그러나 항상 모든 순간이 규칙적이진 않습니다 이건 받아들이셨으면 합니다 ㅎㅎ
특히 이 문제에서는 명시를 했기 때문에 유추는 그냥 맥락없는 풀이인거죠
3(X의 3제곱)은 명시되지 않은것 같아요...
1은 명시된 상수이고 그렇기에 0이 들어가야 한다는 것은 우기는 거라고 생각합니다
아 딱 알았습니다 ㅇㅎ..ㅋㅋㅋㅋㅋ 문제의 어느 포인트에서 불쾌하신지 저도 느꼈습니다
새벽(?)이라서 좀 주저리주저리 길게 댓글 달았는데 좀 민망하네요
내신이라면 아마 출제오류까진 안갈것같긴해요 유추가 깔끔하진 않아도 되기는되서
마지막 항의 계수가 특히 오류가능성을 없애준다고 생각해요
이 말에는 동의 합니다. 일단 신사고에 문의 넣었으니 나중에 결과 알려드리겠습니다
이제 앞으로 제가 할 말은 실례이고 불쾌감을 줄거라고 생각을 합니다. 그렇지만 현재 상황에서는 민망하다는 말이 아닌 자신에게 예의를 지키고 있는 상대에게 비꼬고 반말을 한 점에 대해 사과해야 한다고 생각합니다... 새해 부터 이런 일로 뵙게되어 슬프네요.
지금 저한테 사과를 하지는 말아주세요... 저희가 조금 다툰일은 잊고 좋은 새해 보내시길 바랍니다
?ㅋㅋㅋㅋ 다퉜다고 생각하지도 않고 제가 사과할 일인지도 잘 모르겠네요 상수항과 나머지항들의 관계가 일관성이 없다는데에서 불쾌감을 느낀걸 동의한거고 그와 별개로 문제 오류가 될 가능성은 거의 없어서..
민망하다는거는 별것도 아닌거를 거창하게 얘기해서에요
유한 표현으로 바꾼거는 닉이 너무 어려보여서에요..제 말투가 비꼰다고 느껴지시면 커뮤를 하면서 상처 많이 받으실것 같아요 아무튼 좋은 하루되세용~
죄송하지만, 저는 이 말에는 동의하기 어렵습니다.
저희의 의견이 좁혀지지 않고 서로를 헐뜯는 모습이 되어가고 있는것 같아서 슬프네요.. 제가 신사고 물어봐서 문제 오류인지 아닌지 확인하여 알려드리겠습니다.
공업수학도 쎈이 있나 1초 생각함
저도 제목땜에 어그로 끌려서 들어왔음요 ㅋㅋㅋㅋㅋㅋ
잼민이여서 행렬 아는 세대에요 :]]
(다시 읽어보니 제가 그냥 급발진 했더군요... 죄송함다...) 야릇한쿼크님과 생각을 나누고 새해 인사 나눴습니다. 모두 새해 복 많이 받으세요!
규칙을 찾을려고 하기보다 계속 나열하고 노가다 뛰어서 직관적으로 관찰하는 문제도 있는법이죠
이런 문제도 x^3의 계수에 x^4 이상이 영향을 안준다는 걸 보고 쭉 나열하면 되는 문제라 문제에 전혀 오류나 논란이 될 만한게 없어보입니다
아 x^3의 계수가 3인게 문제인건가요?
저는 •••이 저 다항식의 모든 항에 규칙이 적용이 된다는것을 의미한다고 생각했어요. [0 × (X의 0제곱) + 1 × (X의 1제곱) + 2 × (X의 2제곱) + 3 × (X의 3제곱).....] 을 의도 한것 같다고 생각했어요 그렇지만 0 × (X의 0제곱)은 0 × 1이여서 0이 나왔기에 n × (X의 n제곱) 이라는 항의 n 값이 중복없이 0 부터 100까지의 정수 101개의 덧셈한 값의 제곱의 구조를 가진 다항식과 다른 구조를 가진 다항식이 나와요. 만약에 위 다항식에 규칙이 없다면 3 × (X의 3제곱) 이 나온다는 보장이 없다고 생각 해요. 물론 [x, 2(x의 제곱), 100(x의 100제곱)] 을 보고 유추할수는 있다고 생각하지만요, 같은 규칙이 모든 항에 적용돼야 한다고 생각했어요.
혹시 제 주장에서 틀린 부분이 있나요? 새해 복 많이 받으세요
틀린 말은 없지만 저렇게 되어 있으면 상수항과 x 항들을 분리해서 생각할 정도의 융통성은 있어야 합니다
출제자의 의도로 융통성 있게 풀기는 했어요. 그저 중의적으로 해석될 여지가 있어서 글을 적어본거에요. 물론 답은 제 주장으로는 문제의 조건에 해당하는 답이 나올수 없기에 답은 한개로 보장된다고 생각해요.
하지만 이 문제의 답은 한개로 보장되어도 과정에 중의적으로 해석될 여지가 있으면 좋은 문제라고 볼수 없다고 생각해요, 모쪼록 의견 주셔서 감사합니다 :]
꼬투리 잡는것처럼 보였겠지만... 무슨 말씀이신지 이해했어요!! 좋은 하루 보내세요
이게 애초에 3차항 구하는 과정에서 뭔가 규칙이 보인다고 생각하셔서 일반화가 된다고 생각하신거 같아요. 근데 애초에 3차항만 본거잖아요? 일반화가 될 것 같다는 추측인거지 본인 말씀대로 안되는 것을 보이셨으니까 일반화가 안되는 겁니다. 하나의 케이스에서 보인 규칙이 전체에 적용이 안되니까 오류라고 느끼시는 거 같은데, 애초에 일반화라는 것은 모든 케이스에서 다 성립을 해야 되는 거에요. 답지에서는 단순 전개로 푼 것 뿐이고요.
무슨 말씀이신지 이해했어요. 전체 케이스에 적용이 안되기에 (n이 정수일때) n(X의 n제곱)이 모든 항을 표현할수 없으므로 일반화는 되지 않는다고 저도 생각합니다
단순 전개로 풀면 되는것이라고 해주셨는데 일반화 할수 있는 규칙이 없는 항들을 가진 다항식에서 특정한 항의 값을 보장할수 있는 방법이 있나요? ㅠㅠ
(추측과 보장의 차이가 신경쓰여요...)
전개식에서 x^3의 계수를 구하려면 줄임표에 생략되어있는(문제에 나와있지 않은) x^3의 계수를 알아내야합니다.
다항식에서 줄임표는 말씀하신대로 규칙성이 있을때 사용되는데 명시되어 있는 x,x^2, x^100 의 계수를 보고 x^3의 계수를 3인 것을 알아낼 수 있습니다
위에 분이 말씀하신것처럼 상수항과 나머지항들을 구분해서 생각하시면 의문점이 해결될거같습니다
만약에 문제에서 x^100의 계수를 명시해주지않았다면, 규칙성을 상수항까지 포함하여 생각할 여지가 분명 있지만 문제에서는 x^100의 계수를 명시해줬으니 우리는 항의 규칙이 일차항부터 백차항까지 적용됨을 알 수 있는것입니다. (줄임표를 썼으니 전개식에 규칙성이 있는것은 확실합니다)
이의 제기 결과: 이상 없음
쎈 공통수학1 13쪽 50번은 주어진 100차식의 제곱의 전개식에서 x의 세제곱항의 계수를 구하는 문제입니다.
여기서 제곱해야 하는 다항식은 오름차순으로 정리된 100차식 1+x+2x^2+…+100x^100이고
"이 식의 상수항은 1이며 일차항부터 nx^n (n은 1≤n≤100인 자연수)의 꼴인 다항식으로 주어졌습니다."
따라서 주어진 식의 전개식에서 x의 세제곱항이 나올 수 있는 항을 찾아서 계산할 수 있으며