정말 멋잇는 문제 2
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설문과 391로 뚫리는데 나오면 너무 슬플거같아.. 4
괜찮아 난 메디컬 26학번이니까
-
즐겁다 5
.ㅋㅋ
-
고공이 추합이 별로 안돌기는하는데
-
[속보] 윤 대통령 "계엄군, 민주당 갈거면 국힘도 보내야" 1
대통령 측, 김용현 전 장관에 재재주신문 진행 중 윤석열 "여론조사기관 꽃, 내가...
-
60후반인데 150명 모집이라 반바퀴는 돌겠지 싶다가도 점공에 인하자전 1지망 많아보여서 걱정됨뇨…
-
너무 하기싫다..진짜
-
보통 다 폭발해버림?
-
네.
-
보닌 설학부 6칸 연경 4칸이었음 영어 2등급이긴해도 이건진짜ㅋㅋ
-
약대갈껄그랫나 12
원랜 입결 비슷햇단말야..
-
범준이형.... 3
수1은 버린거야?....
-
중앙대 글금 최초합 경제 노예비불합 표본이 왜이리 많음?
-
수능 성적 갖고 남녀 유불리는 왜 말하는 거임 ㅋㅌ 7
여자라서 공부를 못하는 것도 아니고 저딴 기사를 왜 내는지 눈에 빤히 보이네 그냥...
-
전한길, 尹 탄핵 반대 집회 출격한다 '1월 25일 여의도' 3
최근 '부정선거' 의혹과 윤석열 대통령 '비상계엄'의 연결고리를 짚으며...
-
아마 못 고칠 듯
-
낙지 연경 수능성적 인증 시작한 첫날에 최종컷 708이었나 4
고경도 한 670정도로 기억하는데 진짜개얼탱없네
-
여기까지는 뚫리는 과 없죠..?
-
기분좋군.
-
드가자
-
님들 레어… 2
레어 계속 사고파는게 이득임 아니면 손해임?
-
공군레어 ㅋㅋ 847기 641일동안 고생 많았음여 자유다
-
좀 많이좀 빠져라
-
뭐지
-
지거국 점공계산기 안맞는다고 하던데 꽤 맞는듯 하네요 ㅋㅋㅋㅋㅋ
-
내가 더 크게 성공하려나보다 공부나 해야지
-
고경 ㄹㅈㄷ구만 0
무섭다무서우ㅗ
-
안녕하새요 작수 미적 21 22 28 29 30 틀렸는데 뼈문과라 확통 돌릴까도...
-
커뮤 끊어야겠네 0
여기저기서 들리는 빵소리에 정신을 못차리겠다 ㅆ벌;
-
이건 못참겠는데
-
경외시 성적으로는 어림도 없죠? 어디정도 성적대가 뚫린거지…
-
오...
-
수학 상태 점검하기 좋은 N제 있음 추천 부탁드려요~ 3
용도: 상태 점검+약점 세부 테마 찾기 기출이랑 같이 할 거라서 분류가 아주 세분화...
-
세어봣는데 추합만 65명이 도네요 점공 70명 빼고 다 들어왔고 140등 컷이...
-
있을까요?
-
근데 연고 상경 69x/65x로 쓴 애들은 갈만한 애들이긴함 1
서성한가도 상관없단 마인드로 낮과 안쓰고 야수의 심장으로 상경을 썼는데 이정도면 상경 갈만하지
-
바로 나 군 서성한+중, 다 군 중앙에 달려있음 서강이야 뭐 싹다 나 군에 있어서...
-
공군 가산점 잇나
-
혀뿌리가 끊어질거 같음
-
원서영역 1등급 ㅇㅈ 축하드립니다
-
(컨설팅 참여 공개 조사) 컨설팅 합/불합 모두 여기 ㄱㄱ 11
(많은 분들이 볼 수 있게 아래에 내려가 좋아요 부탁드려요) 컨설턴트 VS 침팬지...
-
2월 7일 5시인거임? 아니 설 전에 발표 제발
-
바로 나 끄아악
-
성대 예비번호 0
자연과학 4n번 가능할까요 (0<n<4)
-
졸업들 하는구나 1
-
ㅇㅈ) 5
ㅈㄱㄴ
-
홋카이도 스키 원정 아버지 모시고 가려고하는데 궁금
-
마더텅 2
마더텅 수2 푸는데 고2 기출도 섞여있더라고요 고2것도 푸는사람 있음?
-
경외시급 빵꾸도 하나 있어야제
-
조언 부탁드립니다.(그냥 다니기 OR 학고삼수 vs 삼반수 vs 군수 +(사탐런??)) 1
심경이 복잡해 약간 글이 길고 난해한 점 양해 부탁드립니다. 원래 교차지원으로...
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음
![](https://s3.orbi.kr/data/emoticons/dangi_animated/003.gif)
먼저 푼 사람이있었다니