sqrt(2)의 근삿값을 찾아보자 !! ㅎㅎ..
x^2-2y^2=1의 자연수 해 x,y를 생각해보자 ㅎㅎ.
그러면 x,y가 커질 수록 sqrt(2)=x/y에 가까워질 것이다. (1의 힘이 약해질꺼니까..)
그럼 큰 x,y를 어케 찾을까.
우선 ㅈㄴ 작은 x,y를 찾아보자.
그럼 금방 (x,y)=(3,2)를 발견할 수 잇다 ㅋㅋ.
이 때 윗 식을 대충 분해해보면 1=(x+sqrt(2)y)(x-sqrt(2)y)을 만족하면 되는데
양 쪽을 제곱해보면
1=(x+sqrt(2)y)^2(x-sqrt(2)y)^2=(x^2+2y^2+sqrt(2)*2xy)(x^2+2y^2-sqrt(2)*2xy)
즉, (x,y)의 해로부터 (x^2+2y^2,2xy)라는 해가 새롭게 생성됏다. 크킄
당연히 다시 생긴 해가 원래 해보다 ㅈㄴ 큼을 알 수 잇다.
이걸 조금 해보자 그럼 초기 해 (3,2)에서부터
(3,2) -> (17,12) ->(577,408)
즉, 우리는 577/408이라는 sqrt(2)에 매우 근접한 값을 얻어냇다. (당연히 더 하면 더 할 수록 더 근접해진다.)
(참고로 577/408은 1.41421568628...으로 벌써부터 진짜 ㅈㄴ 비슷하다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다행
-
자야지 1
응
-
왕자 잘게 7
코코낸내
-
수능 끝나면 그 많던 고닉들 소리소문없이 사라진다더니 2
아직도 있네요
-
배고프다 1
까르보 불닭이나 하나 먹을까...
-
배고프다 5
3연
-
아스날 공약 1
이삭,요케레스 대려올시 유니폼입고 얼굴 ㅇㅈ ㅠ
-
배고프다 2
-
배고프다 6
근데 움직이기 시름
-
뿌리가 너무 깊어
-
ㅂㅂ 3
-
큰일은 역시 이화가 한다
-
ㅜㅜㅜ
-
경찰 출동 했는데도 전혀 진정이 안되고 있다고 함 ㄹㅇ 큰일일세...
-
진짜 다갓네 7
나도 진짜 진짜 그냥 자야하나 에휴
-
근데 안졸린데 어떡해
-
실모 후기 때문이었어서 팔로잉도 실모 벅벅 옯창들 아니었을까 싶은데
-
부모님이 2
수의예과라도 가면 벤츠 사준다느데 이거 휴학하고 진짜 빡세게 돌려 ??? 형이 한번 보여줘???
-
내 첫 팔로잉 1
ㅈㄴㅂㅇㅇ
-
오르비 안녕히주무세요 21
-
누군지도 모르는 분들이 대부분인데 뭐지 ㅋㅋㅋㅋㅋ 일단 칼럼러를 팔로우하진 않음
-
시대 ta 1
수떨물합 96 100 100인데 수학 떨어짐ㅠㅠ 역시 시대의 벽은 높군하,,, 고능아 대잔치..
-
초반에 내 존재를 알리기위해 팔로잉 껏다켯다 연타함 신호가 안가나봄 근데 그래서 엄청 뒤섞임
-
민트 아님 무지개테네요 ㄷㄷ..
-
회사다닌다고 말해도 사람글이 의사인거 다 암 나도 저새끼가 의사인지 아닌지 얼굴만 봐도 보임
-
"국헌문란 목적의 폭동" 그 자체 ㅋㅋㅋㅋ
-
작수 물리<이거 0
다맞긴 했는데 다시 보니까 어떻게 풀었는지 도통 모르겠는,, 2개월 쉬니 능지이슈...
-
오르비 하는중에 팔로우 알람오면 맞팔박음.
-
오목둘사람 2
자신 있으면 자퇴빵 하자 심심한데
-
팔로잉 목록 봤는디 12
왜 1빠따가 정벽이었을까 아마 수능 성적 궁금해서 팔로우 했던 거 같은데
-
1년을 기다린다라다라 11
마다라 나 사람 얼굴 기억 못하는데 이름도 일주일이면 까먹는단 말야
-
정작 봉직의들은 밖에서 회사 다닌다고 말하고 다니는데 이놈의 나라에서는 의사라는걸...
-
음 .. 2
-
원래 불법재르비는 확인되면 사형당하던데 빌런 아닌 이상 놔두네
-
원래 저번시즌엔 트로사르가 결정력이 좋았는데 이번시즌에는 그 폼이 안나오는중
-
롤 너무 어렵다 7
시작한지 한 달 반정도 된거 같은데 너무 어렵노
-
재르비 아는 법이 19
팔로잉 목록이 시작부터 옯창들이면 재르비 확률이 매우 높음 뉴비가 타락햇으면...
-
아이는 신이다 14
개이뽀
-
다 자냐 3
잘자 난 짐정리 할게..
-
흠… 뭘하고 싶었더라 나
-
자야지 2
다들조은밤
-
첫닉은 11
하이샵
-
민감한 주제인건 알지만...
-
내 첫닉... 3
이 뭐였는지 나도 까먹음
-
22년도 초반 24년도 초반 이때 했었는데
-
뭔가 인강듣는 시간 아깝고 2배속으로들어도 뭔말인지 알아들어서 강의는 다 2배속으로 돌려봤었는데
이정도면 열심히 썻어..
스쿼트라
squirt요???
어휴
에...
파이 근삿값 구하는 급수식은 봤는데
쌍곡선 점근선이었군요