[1000덕] 기하 문제 하나 더 나갑니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
갑자기 화악 피곤해지는 느낌
-
이 넘 아깝다… 계속해도 답 없는 물리에 하루 공부 시간의 절반씩 투자하기도 하면서...
-
이웃광고 이거 ㄹㅇ 좋은듯 확실히 문의많이들어와
-
내일 스타듀밸리 10시간 해야함.
-
오지훈 기출분석 틀린 문제만 들으려고 하다가 강의 하나도 안듣고 다 풀어버림 그냥...
-
새벽에온다 오전에안오고
-
점공안한애들한테 문자나 잔뜩 보내지
-
가사 개숭함 저런 곡인지 몰랐었는데
-
오오 오오오오 민 족 성 대
-
대충 단기목표 1
3월 되기전까지 수학 좀 버려놔도 되는 상태 만들기.강기분 언매 강기본 고전영단어장...
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
김동욱 1
슬슬갈게요
-
우풀백 없어서 파티 땜빵 좌풀백 없어서 넌 누구세요 땜빵 살리바 갈려서 체력 때문에...
-
알바앱보면 사장이 원하는 기간이 있잖아요 혹시 군대같은 어쩔 수 없는 사정으로...
-
오히려 야스씬 없는 순문이 있나 싶을정도임
-
싸우는거 얘기하는건데 이상한 생각하신거아니죠?
-
♚♚수능의 시발☆점♚♚입실시$$전원 수능만점@@수능점수획득기회 9
어그로는 아닌데 죄송합니다 열품타 홍보글 좀 쓰겠습니다...
-
아놋.
-
잘 키워줄게밥은 안 줌
-
무슨 반응이 술 취한 것같이 나오네 하씨 지금 잘까
-
하아
-
강대 재종 질문 0
강대 내가 원하는 쌤 넣으면 들을 수 있는건가요? 분위기는 어때요?? 아는애들 많이...
-
우웅 3
ㅋ
-
컴공 일기265 11
https://school.programmers.co.kr/learn/courses/...
-
팀 진짜 ㄹㅈㄷ네 오리아나 선픽했는데 상대 미드 티모 나와서 헤르메스 신고 파밍만...
-
ㅁㅌㅊ?
-
존나 싸워;;;;;;; 님들 에타도 이래?
-
휴 긴장됐어...넘쎄게부르는건아닌가..
-
안녕하세요 6
-
백호쌤 썰 4
나는 17대 1로 싸운 이야기 첫사랑 이야기 뭐 그런거 안할거야~~ 이렇게 말하던데...
-
수학강사이미지 제외
-
코인갤 터졌네 5
ㅋㅋㅋㅋㅋㅋ
-
그 사람 연관 검색어 보나요?
-
한국사 책 펼쳐보지도 않았음 지금까지 쭉 평가원1
-
일어서야해..
-
감점 겁나 크더라.. 올해 수능 보시는분들 공부 조금씩 미리 해두셈
-
난 가야할 때를 모르겟어
-
이투스 패스 결제완료 10
박모씨 강의 수강 준비 완료
-
상실의 시대 14
합법적 야설 goat 제 3인류도 좀 있었던 기억이
-
이게 잘 풀리면 아무도 걸어보지 않은 길을 묵묵히 걸어가서 대박을 터뜨리는 경우가...
-
이때 교수님들 ㄹㅇ 잡아와야함 문제 겁나 yummy 하네
-
물론 앞에 권들도 다 있음 어때 짱쩔지
-
한국수영탐탐 7
1+6+4+4+2+0
-
수능 4틀이 널린 커뮤...
-
유혹의 기술 18
으흐흐흐
-
에휴이.. 8
에휴..
-
제가 아는 사람중 최고였어요..
-
전 딱히 없음..숫자들은 그 자체로 모두 아름다움
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?
기하황 ㄱㅁㅁ
님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!
3
문제 좋네요
여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요