미적분 문제 (2000덕)
첫 풀이 2000덕 드리겠습니다!
(+ 유명한 문제입니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 인팁이고 낯 개가려서 차피 혼자 다닐거 같은데 혼자 다닌다는 경험이 없어서 좀 무섭네여
-
스스로 내려치기가 심한건가
-
ㄹㅇ임???
-
어디가 젤 쌈 인생네컷 이러는애도있던디 과외용으로 쓰고 나중에도 쓰게 좀 쟁여두게
-
300은 이거 너무 어려운거 아닙니까
-
아 기분좋다 9
고마워얘들아 기분 좀 안좋았는데 기만글 쓰니까 자존감 좀 채워지는 기분이어ㅣㅑ
-
흰 벽에는 ―― 어련히 해들 적마다 나뭇가지가 그림자 되어 떠오를 뿐이었다. 그러한...
-
최저러 중요과목 0
현상황 국어 수학- 고3꺼 거의 안봐봄, 국어 고2 3등급/수학 고2 1~2...
-
커뮤 언급이나 훌리가 건동에 비해 극도로 적은거같음
-
전 잘 모르겠어요
-
맞팔구 7
똥벳이랑 똥테가 잘 어울릴거같아서요 오네가이시마스~
-
대체 누구한테 있는거지
-
법제처장 "헌법재판관 임명보류는 정당한 권한…위법 아냐" 1
최상목 대통령 권한대행 부총리 겸 기획재정부 장관이 마은혁 헌법재판관 후보자 임명을...
-
동대 터졌다는데 6
얼마나 폭난거에요? 궁금하네
-
나 기만이라고 해줘 27
자존감 좀 채워보자 씨발 솔직히 나보다 수능 잘 본 사람 올해 열한명밖에 없잖아
-
100점나와서기분조아짐
-
“엉터리 투표지 많아서”…尹대통령, ‘선관위 계엄군 투입’ 직접 지시 1
윤석열 대통령은 12·3 비상계엄 당시 중앙선거관리위원회에 대한 계엄군 투입을...
-
롤하다가 3등급대 친구 만났었는데 자기는 시험 하루전에 공부해서 삼등급이고...
-
어케요? 아 개잣댔네
-
개꿈이져?
-
우원식 국회의장 5∼9일 방중…中서열 3위 자오러지 초청 1
(서울=연합뉴스) 이봉석 기자 = 우원식 국회의장이 5∼9일 대표단을 이끌고 중국을...
-
제 전닉 공개함 5
하제타임 무려 일본어 온점 하나가 없었음 ㄷㄷㄷ
-
[속보]윤 대통령 "국정원, 수사권 없고 검거는커녕 위치 추적도 못 해" 2
4일, 헌법재판소.
-
상위 1퍼 옵창 이런건가..
-
제곧내
-
누군지 궁금하게 하지마라
-
내가 원서넣은 과 vs 한라인 윗대학 문과 투표하는 게시글 가서 후자에 투표했습니다
-
냥대탈출지금 1
right now
-
재밌네 부럽다 100만유튜버면 내가 평생 벌 것보다 더 많은 돈을 벌었겠지 잘생기고...
-
지듣노 머타치임 2
https://youtu.be/SbxR25brgoE?si=PXcYEpmJhFHbLZA...
-
개추 2
워
-
원래 역류성 식도염 심했는데 싹 나음 ㅋㅋ
-
유튜브 닉네임 추천좀 15
기깔난거 만들어주기면 가지고있는 덕코 다드림
-
이분의 의지를 받들어서 동국탈출지금 이라고 닉변하려는데 어케생각하심?
-
클라우드 공학
-
30이 1000이 됨
-
기출 여러번 풀어보려는데 1990년대부터 2010년꺼까지 좀 계산이 더럽고 요즘...
-
자기 나간다고 여기저기 광고하는 사람들은 왜 그러는거에요?
-
거지라 그런곳 못가봤어
-
왜 60점대일까요
-
커뮤니스트인가요?
-
mypenisbig
-
문학 공부 2
강기분 문학을 들을까요? 아니면 우진문학상 참여를 통한 실전 적응을 할까요?
-
담임이 수학 기본개념 후 기출 박치기 하라는데….하 ㅋㅋㅋㅋㅋ 26
기본 개념 배우고 실전개념 전에 기출 박치기가 가능할까요? 조언 부탁드립니다 현우진...
-
반추하다=되새김질하다
-
아주 귀여워 코끼리 으흐흐
-
[여르비 닉 기억해 놨다가] https://orbi.kr/00071783435...
-
오래 쓴 샤프가 잇는데 샤프심너무 많이 넣어서 막힘 Rip…
-
맞팔해요 5
애니프사 환영 아니여도 환영
-
저 이지영 권용기 듣는데 님들은 뭐 들음
미분해야겠네
어캐푸는거야
a[n] = 2^(1/n²) + 3^(1/n²) + ... 2^(1/n)
∫[1, 2ⁿ] x^(1/n²) dx ≤ a[n] ≤ ∫[2, 2ⁿ+1] x^(1/n²) dx
{1 - 1/(n² + 1)} (2^(1/n + n) - 1) = P[n] ≤ a[n]
≤ {1 - 1/(n² + 1)} ((2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)) = Q[n]
ln(P[n])/n = ln{1 - 1/(n² + 1)}/n + ln{2^(1/n + n) - 1}/n
lim(n→∞) ln(P[n])/n = lim(n→∞) ln{2^(1/n + n) - 1}/n
= lim(n→∞) [ln{2^(1/n + n) - 1}/ln{2^(1/n + n)}] × [ln{2^(1/n + n)}]/n
= lim(n→∞) (1/n² + 1)ln2 = ln2
ln(Q[n])/n = ln{1 - 1/(n² + 1)}/n + ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
lim(n→∞) ln(Q[n])/n = lim(n→∞) ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n + ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n
+ [ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/ln{((2ⁿ + 1)/2)^(1/n² + 1)}]
× [ln{((2ⁿ + 1)/2)^(1/n² + 1)}]/n
= lim(n→∞) (1/n³ + 1/n)ln2 + (1/n³ + 1/n)(ln(2ⁿ + 1) - ln2)
= lim(n→∞) (1/n³ + 1/n)ln(2ⁿ + 1)
= lim(n→∞) {ln(2ⁿ + 1)/ln(2ⁿ)} × ln(2ⁿ)/n × (1/n² + 1)
= ln2
lim(n→∞) ln(P[n])/n = lim(n→∞) ln(Q[n])/n = ln2
∴ lim(n→∞) a[n] = ln2
적분을 이용한 풀이도 있네요ㄷㄷㄷㄷ
https://orbi.kr/00071716950
위 문제에서 사용했었던 방식으로 풀어봤습니다
혹시 정석적인 풀이는 뭔가요?
적어주신 풀이가 정석적인 풀이입니다 :)
아 상합은 2로 해서 조절하나 했는데 그냥 이게 정석이군요. 근데 lim x->inf 저 식은 없어도 풀 수 있지 않나요?
ln(2^n-1)/n 극한을 가장 쉽게 처리할만한 극한을 주었습니다 :)
이런 문제들도 많이 풀면 금방 풀게 될까요? 이거도 처음에 식조작 뻘짓을 하긴 했는데ㅠ푸는 데만 거의 20~30분 들어서
'경시'용 문제이기 때문에 오래 걸릴수 밖에 없는 문제라 봅니다! 경시용 문제의 특징이 '발상'이기 때문에 오래 걸린다고 해서 너무 신경쓰실 필요는 없을 듯 합니다!