풀만한 수열의 극한 문제 하나 드립니다~
답.txt
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다..
원문링크는 아래와 같습니다.
https://www.artofproblemsolving.com/community/u296133h1220663p6119372
링크 댓글에 제가 허접한 영어실력으로 풀이를 달긴 했는데 저의 작문 실력을 보이고 싶지 않으니 그냥 무시하시면 됩니다..답은 첨부파일에!
(링크가 뭐 엄청 대단한 문제처럼 돼있는데 실상은 그렇진 않은 것 같습니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
손 시렵지만 3
오르비를 멈출수 없는나
-
이짓거릴안한다면 더 빠르게 읽을수있을거같은데 예전부터 이래왔어서 뇌빼고 나무위키나...
-
언매미적영어물리지구 100 96 1 48 42 인설의 가능한 점수인가?
-
이재용
-
상위 직종비율은 이과 65 : 문과 35다 그랬으면 좋겠네요 ㅋㅋ
-
저번에 개같이 쳐맞고 아직도 정신을 못차렸나.하긴 못차렸으니까 탈퇴도 안하고...
-
나도 질받 3
-
놀라운 사실: 9
어제 산 바나나킥 다 못먹음 좀따 방 다 치우고 먹어야지
-
아...
-
나도 질받메타 탑승 21
무물보
-
13번인가 그 f(x) g(x) 다항함수고 마지막에 정적분 0부터 1/2 구하는거...
-
안됨뇨
-
이제진짜틀딱이구나
-
03인데 의대 갈 가치가 없다고 보시는 분들도 많은 거 같네요.. 졸업할때까지...
-
질문받아드립니다 12
ㄱㄱ
-
왜?? 왜?????
-
강원지역의 한 육군 부대에서 훈련 중 다친 일병이 끝내 사망했다. 26일 군 당국에...
-
내가 제설작업해야 하거든
-
뭐 첫눈? 2
눈 왜 벌써와
-
눈오는데? 10
진눈깨비에 가깝긴 하지만
-
라인봐주세요 0
언미물생 메가기준 백분위 89 97 1 96 75 인데 교차지원 없이 어디까지 가능인ㄱㅏ여
-
써도 도움이 많이 될진 모르겠네 일단 열심히 써볼게요
-
뭔 ㅋㅋㅋ 17
서울대-로스쿨 테크가 의사보다 상방높다고 티나는 바이럴을 하고 앉았네 그렇게 치면...
-
박카스 젤리 맛있다 13
오...
-
누구보다도 최우제 쉴드 개열심히 치던사람인거 오르비에서 모르는사람 없음 다들...
-
이룬거도 겁나 많은 성골유스 + 열광하기 좋은 플레이스타일 깔끔하지 못 한 마무리로...
-
이거 서성한 되겠죠….? 중대 논술 안갔는데….ㅜ 연고 하위과 상향 지원도 가능한가요….?
-
심심한데질받하죠 6
ㄱㄱ
-
ㅈㄱㄴ?
-
건대 공대나 교차지원으로 중경외시 문과중에 가능한 곳 있을까요..?
-
옆사람 성적 볼 때 더 멘탈 나갈듯
-
공부할땐 n제 후기가 정말 필요했는데
-
난 쓰레기야 8
고미
-
이거 뭐 다음날 훈련이 있어서 좀 총기손질이나 이런걸로 제한하는거 제외하고 간부들이...
-
내가 제일 인지도가 높나 얼마전까지만 해도 월붕이 진화노예 예나오리 등등이었는데
-
2022년, S 모 고등학교(자사고, 안 가는 걸 추천)에 다니고 있던...
-
인공지능대학원 + 아웃풋 우수한 학사, 석사, 박사 과정 및 커리큘럼 교수진,...
-
공통틀이 유리한거임? 본인 미적1틀 공통 2틀임
-
그렇다고 해주시면 안될까요..
-
1차 세탁 시도 -> 민심 그대로 -> 패선생님 당황 -> 2차 세탁 본인이...
-
조금만 더 0
메인은 갔다가 블라당하고 싶어요
-
의사 망할일은없음 ㅋㅋ 11
증원된다고해도 뭐 예전만못하다정도지 여전히 고소득자일거고 일반회사원만큼 떨어질일은...
-
질받 27
-
연애 두려운점 4
내가 한번 정을 준 사람한테서 정을 진짜 더럽게 못 떼서 ㄹㅇ 간이고 쓸개고 다...
-
질받 18
-
스울대 가고싶다 8
스울대 아니면 도저히 만족을 못하겠다
-
수능끝나고 4
할거 없는데 추천좀.. 게임은 안 좋아해요
-
대체 왜 이딴 시스템을고집하는거임? 여론조작이 하루이틀도 아니고 심하네 참
-
나두 무물보 24
코시수열은 교육과정 아득히 바깥..ㅠ
이 수열은 굳이 따지자면 코시수열이긴 하지만, 왜 그 말씀을 하시는건지요?..
엡델 안쓰고 교과과정 내에서 어떻게 답을 구할 수 있을지 잘 모르겠네요. 풀이 보여주실 수 있으신가요?.?
그냥 대입해서 계산하다보면 x4, x5의 절대값이 1/4보다 작습니다. f(x)=x^2+x/2라고 할 때, x2n, x(2n+1)의 절대값이 a보다 작고 a가 1/2보다 작으면 x(2n+2), x(2n+3)의 절대값이 f(a)보다 작음을 절대부등식을 통해 할 수 있습니다. n이 1씩 커질수록 절대값 제한에 f가 덧붙여지고, 이때 링크의 제 풀이에서는 f가 덧붙여지는것을수열로 표현했는데, 여기에 f가 붙을수록 0에 수렴함을(말로 표현하려니 이렇게 밖에 안되네요..) 증명할 수 있습니다.(이는 등비수열에서 공비가 1보다 작으면 0으로 수렴함, 샌드위치 정리에 의해 증명되지요.) 절대값 제한이 0에 수렴하니까 결국 샌드위치 정리에 의해 xn자체도 0에 수렴하게 되지요. 링크의 풀이에는 제가 엡델을 썻는데 그냥 제가 입델을 좋아해서 쓴 것이고, 굳이 쓸 필요는 없다고 생각합니다만...
샌드위치가 먹힐 줄 몰랐네요. 감사합니다