2014 7월 모의고사 수학B 30번 한완수를 이용한 풀이
2014 7모 수학B 30번 풀이.hwp
2014 7모 수학B 30번 풀이.pdf
한글 파일, pdf 파일 모두 준비해놨으니 필요하신 분들은 가져다 쓰세용 ^^
과외 학생에게 쓸 자료인데, 여기다가도 한번 뿌려봅니다 ㅎㅎ
잘 보셨다면, 좋아요 눌러주시면 정~~말로 감사하겠습니다. 보다 많은 사람이 봐야하니까요 ^^
p.s 들리는 썰에 따르면 평행한 면을 바로 찾거나, 법선벡터를 이용해서 풀어낸 경우도 봤습니다.
이런 경우의 풀이도 한번 생각해보시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
교재비 포함 20전후로 생각하면 되나요??
-
왓~삐~ 0
-
메가대로만 나와도 소원이 없겠다... 71 70 이야기가 왤케 많냐 ㅜ
-
기출은 거기서거기 맞나요 원솔멀텍 vs 기출생각집 vs 수분감 너무 고민되어서요
-
언매 85 (61+24) 확통 63 (47+16) 최저 때문에 피가 말라요
-
못참겠다 저격함 17
-
빅괴군 보고가 2
OUT
-
오늘의 우리를 기록해 어제의 우리를 위로해 내일의 걱정은 뒤로해
-
정법 1번, 사문 11번 개쉬운문제들 정답 4고 기억도 나는데 가채엔 3이라...
-
수영장파티케틀 1
슴
-
얼버기 16
모두 좋은 아침
-
원인있음의사난수 원인없음진성난수 제1원인은->원인없음 제1원인은->진성난수...
-
귀여워! 12
-
3,4등급 애들은 재수 어디서 함? 시대 강대 미만 다 비슷함? 3,4등급 재종기숙 추천좀
-
페북느낌난다
-
오디다가 하시나용
-
모닝여캐투척 21
짠
-
'현장감' 이 차이가 정말 큼 화작은 아무리 어려워도 공부가 잘돼있다면 시험장에서도...
-
부산대 인문논술 0
부산대 인문논술 3-2 소문항 한개 못적었으면 무조건 탈락인건가요? 앞에껀...
-
https://naver.me/GpC6rq15 이지랄 ㅋㅋㅋㅋㅋㅋㅋ
-
대 리 런 4
약코 GOAT
-
그때부터는 꿀이 아니라는거군요 그럼 존버가 승리하는것?
-
인스타 릴스에 중드 계속 나오는데 찔끔찔끔 보여주고 딴데선 못찾겠어서 정신이 나갈것 같음
-
아니면 따로 낙지에서 만든 변표공식이 있나요?
-
야채음료 먹음 2
오늘 먹을 메뉴가 다 야채가 부족해 이거라도 먹어야지
-
한국국립대학교??? 11
너무 보통명사 아닌가 얘네 이걸로 이름 바꾸려고 이러는 것 같은데 흠?
-
얼버기 5
-
아오 습해 1
비와서 축축해
-
세상은 올바른 선택을 하는 것이 그 무엇보다도 중요하다는 것.
-
슬슬 자볼까 1
겉날개얻고 몬스터팜 만들었으니 꿀잠자러 고고
-
얼버기 4
인녕하세요
-
지금까지는 맞는말같긴함 작수때 언매미적물1지1으로 89 89 2 88 95 맞았는데...
-
워드마스터2000 끝냈고(3회독) 암기율은 80정도? 제가 단어가 약헤서 다른...
-
힘을 좀 내줘 씨발럼아!!
-
영어 과외 질문 0
고등학교 3년 내내 모고 1등급은 놓친 적이 없고 수능은 97점 나왔습니다. 올해...
-
아침 먹으면서 쿵짝짝 쿵짝짝 하면서 토스어플 딱 까봤는데 떡락한 거 보고 나이스...
-
진단서 써줌? 기말 끝나고 링거 맞을건데 병원에서 진단서 써주는지 궁금함
-
군대 안가면 좋겠다는 말도 안되는 망상을 해본다
-
저 남르비예요.. 오해하시는 분들이 많으신 것 같길래
-
하나 사고싶은데... 비싸...
-
얼버기 0
우헤헤
-
아 어제 할껄 4
비 오고난 후 추워질텐데 역시 할 일은 바로바로 해야 해
-
사실 출근안했고 아침먹는중임 가기싫다
-
이거 좀 답해줘 3
9시 수업있는데 원래 2시 수업도 있는데 싸강됨.. 귀찮은데 걍 모자쓰고 갈까??...
-
아학교가기싫어 6
비는 또 왜 오는건데ㅠㅠ 지금 결석할지말지 고민즁잉대ㅜㅜㅜ
-
헤헤
-
곧 7시가 되기 때문입니다 오늘도 파이팅
-
뻘소린데 0
요즘 물가에 질식할 것 같음 걍 날 죽여라
이 문제를 정사영해서 이면각구하셨다는 말씀인가요 ??
저는 어차피 이면각을 구하는 거니까 원기둥에 생긴 면을
정육면체로 끌고 내려와서 매치시키니까 정사면체 이면각과 똑같길래 정말
1분컷으로 풀었었는데;;
그렇게 푸는 것이 가장 빠르다는 것은 인정합니다. 제 풀이법은 일종의 대체재 성격을 띄는 풀이입니다. 시험장에서 평행한 면을 보지 못했을 때를 대비한 풀이라고나 할까요 ㅎㅎㅎ 만약 시험장에서 교육청의 풀이법이 안보였다면 어떻게 하면 좋을까라는 발상에서 만든겁니다.
아... 공간도형 문제는 풀이법이 다양하니 님의 풀이도 공부해봄이 좋을듯싶네요 감사합니다ㅋㅋ^&^
단면화 과정이 전혀 이해안되네요 저렇게 단면화 된다는 보장이 있나요? 코멘트없이 쓸 정도로 전혀 자명해보이지는 않네요
평면을 하나의 직선으로 보는 것의 단면화의 핵심입니다. 세개의 평면 중 어느 하나라도 평행한 평면이 없고 공통 교점을 가지는 평면이 없다는 것은 그림으로보면 너무 자명한 사실이구요 그래서 저렇게 삼각형 모양으로 단면화해도 문제없습니다
아무튼 좋은 의견 감사드립니다 ^^
저두 ㅎㅎ 그냥 길이 적어보니까 맞는거같아서
좌표풀이 만사형통
법선벡터의 각!
닥 외적
외적 몰라요ㅠㅠ
님처럼 수학 잘하면 수학 엄청 재밌을 듯 ㅜ
문과라서 무승 말인 지 하나도 모르지만
좋아요 누르고 가요!ㅋㅋㅋ
이분참 재미지단말이야 ㅎ
이렇게 단면화 시키려면 먼저 세 평면이 공통교점을 가지지 않는다는 것과 한 평면에서의 법선벡터가 나머지 두 평면의 교선에 수직한다는 점을 먼저 증명시켜야 단면화논리가 성립함.(작년수능 29번문제하고 같은 논리) 이거 먼저 언급하고 적용하시면 완전한풀이가 될 듯
좋은 의견 감사합니다 ^^
위위위에 댓글에 이미 단면화 논리 알고 계셨군요 ㅎㅎ
일단 댓글 써놓고 단면화 되는지 확인해 보니까 이분말대로 공통교점있고 법선벡터가 나머지평면 교선에 수직하지도 않네요 이거 단면화 논리 오류인듯
공통교점은 점 D라고 나오는걸 봐서는......
시간이 많이 남아거 영혼없이 평방 구했네요 ㅋㅋ
단면화를 하려면 두 면의 교선이 점으로 보이는 시점에서 두 면을 직선처럼 보는건데
저 그림대로라면
면 DEG와 밑면과의 교선,
면 PQR과 밑면과의 교선,
면 DEG과 면 PQR의 교선
이 세개의 교선이 평행해서 한점으로 보이는 시점이 있다는 건데 실제로는 교선들이 평행하지 않으니 문제풀이에 오류가 있다고 생각합니다.
걍좌표로풀고 외적써ㄷ
넘 오래걸려요 ㅠㅠ
외적 굳ㅋ 2분컷
정말 문과와 이과는 종이 1억장 차이다
그럼 이 문제를 단면화로 푸는건 논리적 비약이 있다는건가요?? 어떻게 답은 맞는건지요?
저는 정사영을 2번하는 방식으로 풀었는데 어떻게 생각하시나요?
그냥 넓이에다가 코사인세타1과 코사인세타2를 곱해서 1/3값을 곱했는데 답은 맞았거든요
저 교육청풀이가 cp를 이용하여 푼거아닌가요
저도 저렇게풀엇는데..
제가 머리가 나빠서 논리적으로 맞지않다고 생각하는건진 모르겠는데, 답만 옳게나오는 짜맞추기풀이아닌가요?
저거 단면화과정 없어도 괜찮지않나요? 어째선지 저방식하고 비슷하게 그냥 cos세타1 cos세타2 구해서 두개 덧셈공식해서 구했었는데...
그냥 잘못 푼 거 같기도 해요. ㅠㅠ
코사인세타1오타잇으세요 DI/IH ---> IH/DI
네 확인했어요 ㅠㅠ 죄송합니다